Хроноструктура биоритмов сердца и факторы внешней среды

Автор работы: Пользователь скрыл имя, 07 Июня 2013 в 00:34, реферат

Краткое описание

Работа посвящена экспериментальному изучению в наземной лаборатории и в условиях космического полета хроноструктуры ритмов различных показателей сердечно-сосудистой системы, а также их изменений под воздействием факторов внешней среды. Приводятся данные, показывающие, что циркадианная система сердца гибко и последовательно изменяется в циклах, имеющих многолетние, инфрадианные и многодневные периоды, например, таких, как одиннадцатилетний цикл солнечной активности, около 28 –дневный, около – 14-дневный, около-недельный ритмы. Выявлены достоверные отличия хроноструктуры суточного ритма, определяемые сменой сезонов года.

Прикрепленные файлы: 1 файл

monografia.doc

— 1.51 Мб (Скачать документ)

       Авторами  книги проведено сопоставление  результатов по моделированию десинхроноза и воздействию геомагнитной бури на подопытных животных с данными наблюдения космонавтов на борту орбитальной станции МИР также во время геомагнитной бури и в аналогичном сезоне года.  Это сопоставление позволяет  утверждать с достаточной убедительностью, что возмущения геомагнитного поля приводят к десинхронозу и адаптивной стресс-реакции у всех живых организмов, типичной  для реакции этих систем на любые внешние стрессорные воздействия. Характер воздействия и его интенсивность зависят, как и при модельном десинхронозе, от исходного состояния циркадианной системы в момент воздействия. 

         Этот вывод,  наконец, дает убедительное  и  разумное объяснение вопроса  о том, каким образом геомагнитные возмущения воздействуют на живые организмы, обсуждавшегося  уже несколько десятилетий.

        В заключение можно сказать,  что представленная монография  вносит существенный вклад в  разработку фундаментальных проблем  хронобиологии, а именно,  проблемы взаимодействия биологических систем с  факторами внешней среды, такими, как ритмы гелио- и геомагнитных факторов и их флуктуации.  Монография, в сущности, открывает новое направление биоритмологии -   исследования морфофункциональных, ультраструктурных (на митохондриальном уровне) изменений миокарда при чрезвычайных внешних  воздействиях на организм, включая геомагнитную активность.

       Практическая  значимость выполненного труда  заключается также  в обосновании  положения об отсутствии фиксированной “физиологической  нормы” работы сердца, уровень которой лабилен и, очевидно,  может быть использован в медицинской практике только с учетом ультра-, цирка- и инфрадианной ритмики активности сердца, причем последняя связана с сезонной и многолетней цикличностью.

Член проблемной комиссии по хронобиологии

и хрономедицине РАМН, член Европейского об-

щества хронобиологов, д.м.н.,  профессор                                                                                                        

Р.М.Заславская

В В Е Д  Е Н И Е

 

В настоящее время  общепризнанно, что ритмичность  биологических процессов является фундаментальным свойством живой материи и составляет сущность организации жизни (J.Aschoff,1985; F.Halberg, 1953-1998; A.Reinberg, 1973; Н.А.Агаджанян, 1975; Б.С. Алякринский, 1968-1985 ; Р.М.Заславская,1991; Ф.И.Комаров., С.И.Рапопорт, 2000;  В.А.Фролов, 1979).

Формирование биологических  ритмов неразрывно связано с эволюционным процессом живых организмов, происходившим с самого же начала зарождения и становления жизни в условиях одновременно развивающихся пространственно-временных закономерностей среды обитания. Элементарные живые структуры могли быть жизнеспособными только при возникновении у них динамически устойчивой временной организации, способной адаптироваться к ритмическим изменениям внешней среды. Возникшая временная структура живого организма, имея широкий диапазон реакций, могла противостоять также и влиянию апериодических  изменений факторов внешней среды, которые, в свою очередь, способствовали поддержанию системы в активном состоянии.

Ритмические воздействия  внешней среды являются главными стимуляторами биоритмов организма, играющими важнейшую роль в их формировании на ранних этапах онтогенеза и определяющими уровень их интенсивности в течение всей последующей жизни. Собственные эндогенные биоритмы организма – это фон, на котором развертывается картина жизнедеятельности и который не обеспечивает последней, если она непрерывно не активируется импульсами из окружающей среды. Последние, таким образом, являются теми силами, которые заводят биологические часы и определяют интенсивность их хода (См. например, Ю. Ашофф , 1984; J.Aschoff,1985; Б.С.Алякринский, 1983; Д.С. Саркисов и др.,1975).

В настоящее время  общепризнанно, что наиболее мощным фактором, формирующим биологическую ритмичность, было собственное вращение Земли с сопутствующим ритмом  изменений освещенности и температуры. Еще в 1797 году Христофер Гуфелянд, рассматривая суточные колебания различных медицинских показателей у здоровых и больных пациентов, пришел к выводу, что в организме существуют “внутренние часы, ход которых определяется вращением Земли вокруг своей оси”, поэтому многие считают Гуфелянда основателем учения о биологических ритмах. Он впервые обратил внимание на универсальность ритмических процессов и подчеркнул, что “наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни”. Правда, некоторые исследователи отдают в этом вопросе пальму первенства французскому астроному, математику и физику Жан Жаку Де Мерану, который, изучая особенности солнечного света и вращения Земли, еще в 1729 году установил, что в условиях темноты и постоянной температуры растения сохраняют свойственную им  двадцатичетырехчасовую периодичность движения листьев, связав тем самым этот феномен не с освещенностью, а с вращением нашей планеты.

     Исключительно  крупный вклад в хронобиологию  внес российский ученый А.Л.Чижевский.  Проведенный им анализ общей  смертности в Российской империи с 1800 по 1900 год и по Сакт-Петербургу с 1764 по 1900 год  позволил выявить столетнюю цикличность смертности, названную им “вековым ходом”. В дальнейшем А.Л.Чижевский связал проходящие на Земле циклические процессы с солнечной активностью. Международный конгресс по биологической физике и биологической космологии, состоявшийся в 1939 году в Нью-Йорке, оценивая работы А,Л,Чижевского, охарактеризовал его как создателя новых наук - космобиологии и биоорганоритмологии, подчеркнув тем самым неразрывную связь между ними. А.Л.Чижевский показал, что почти все органы функционируют строго ритмически, причем одни ритмы находятся в зависимости от физико-химических процессов, а другие - от факторов внешней среды (важнейшим из которых он считал космическое излучение). Кроме того, по мнению А.Л.Чижевского есть группа независимых (врожденных) ритмов.

           По мере увеличения продолжительности  жизни живых организмов  происходил  естественный отбор особей, способных  приспосабливаться к ритмам внешней  среды, имеющим различные периоды. Эволюционные преобразования создали сложную интегральную иерархию  временной упорядоченности биологических ритмов различных видов, в которой ключевую роль по-видимому играла суточная ритмика.

 Интересно отметить, что в  хронобиологии понятие “суточный ритм” носит несколько условный характер. До сих пор нет еще ответа на вопрос, почему ритмы, согласовывающие жизнедеятельность организмов с “хронометром”, точным до долей секунды (астрономические сутки), сами имеют систематическую погрешность до нескольких часов (Г.Б.Федосеев и др.,1987). Можно предположить, что именно эта “погрешность” и есть то преимущество, которое позволило выжить биологической системе в “сумятице” (на первый взгляд) космофизических циклов. Возникновение циркадианного “тремора” позволяет подстраивать систему к широкому диапазону постоянно присутствующих изменений внешней среды, в том числе и к ритмическим изменениям среды. Как отмечал Б.С.Алякринский (1986а), циркадианные ритмы играют роль общего начала в целостной системе организма, выступая в качестве дерижера всех колебательных процессов, и отличаются признаками всеобщности и необходимости, что дает основание считать их закономерным общебиологическим явлением, т.е. говорить о законе циркадианности.

Иными словами можно сказать,  что циркадианные ритмы являются одним из главных компонентов фрактальной системы биологических ритмов, объеденяющей частные ритмические процессы различных морфофункциональных структур. Сейчас можно сказать, что фрактальный принцип биоритмов сердца рассматривался в работе Чибисова С.М. (1993) «Интегральные взаимоотношения разнопериодических биоритмов сердца в норме и при их десинхронозе». Бродский В.Я. (2000) выделяет интегральность как характерную черту биоритмов, отмечая, что даже длинные инициируемые извне и генетически програмированные ритмы складываются из коротких собственно клеточных. Так же как околочасовые ритмы, другие клеточные ритмы , скорее всего тоже фракталы, т.е., хотя и детерминированные и закономерные, но в основе своей хаотические изменения. Видимо, интегральность циркадианных ритмов и определяет некоторую их нестабильность и возможность направленных влияний на их параметры.

В целом диапазон биологических  ритмов весьма широк. F.Halberg (1964) предложил классифицировать биологические ритмы следующим образом: ультрадианные ритмы с периодом меньше 20 часов, циркадианные - с периодом 24 +-0 4 ч. и инфрадианные - с периодом больше 28 часов.

Сравнительно недавно было обнаружено, что существенная роль в жизни  и эволюции всех без исключения биологических объектов принадлежит также инфрадианным ритмам. Среди последних следует выделять: циркасемисептанные ритмы с периодом примерно 3 +_ 0,5 сут.; циркасептанные ритмы с периодом 7 ?± 3 сут., циркадисептанные - с периодом 14 ?± 3 сут., циркавигинтанные с периодом 21 ?± 3 сут., циркатригинтанные с периодом 30 ?± 5 сут., цирканнуальные с периодом 1 год ?± 2 месяца.

Существуют, однако,  и другие классификации  ритмов, в частности, отечественные. Например,  Н.Л.Асланян и соавт. (1989) на основе многолетнего опыта биоритмологических исследований пациентов с различными патологиями предложили обособить интервал времени от 28 ч до 4 суток, поскольку ритмы этих периодов часто наблюдается при патологии. Поэтому именно ритмы в интервале периодов  28 – 96 часов предложено считать инфрадианными и не включать в эту группу ритмы с  большими периодами. Предложено также ограничить пределы ультрадианных ритмов интервалом от 3 до 20 часов, а ритмы с периодом 18 – 22 ч и 26 – 30 ч считать переходными к ультрадианным и инфрадианным.

Н.Л.Асланян, С.М.Чибисов и Г.Халаби (1989) приводят следующее, можно сказать, “утилитарное” определение понятия “биологический ритм” – это ритм живого организма, периодический компонент которого в биологической временной организации целесообразно оценивать с помощью математических методов.

Основными параметрами, характеризующими биологический ритм, являются следующие величины. Период–интервал времени, в течение которого исследуемая величина совершает полный цикл своего изменения (период обратно пропорционален частоте ритма).  Мезор – средний уровень исследуемого показателя за один цикл.  Амплитуда – это половина разности между максимальным и минимальным значениями аппроксимирующей данный биоритм косинусоиды, либо  разность между ее максимальным отклонением и мезором. Акрофаза – это значение временной шкалы в момент наступления максимума амплитуды, выраженное в градусах. Накопленные в настоящее время экспериментальные и клинические данные не вызывают сомнения в том, что изменения ритмов внешней среды являются факторами, обуславливающими морфологические и физиологические изменения в организме. Однако, зачастую конкретная информация носит противоречивый характер и требует дальнейшего углубленного и систематического изучения морфообразующей роли временной организации организма, в частности его регуляторно-адаптивных систем ( Р.М. Баевский, 1976;1979, Э.С.Матыев, 1991). По мнению В.В.Парина и Р.М.Баевского, рассогласование биоритмов предшествует развитию патологических состояний с последующими информационными, энергетическими, обменными и структурными изменениями.

 

 

 Г Л А В А  1

 

  П А Т О Ф И З И  О Л О Г И Я     Б И О Р И Т М О В

1.1.Десинхроноз и адаптация к воздействию внешних факторов

 

 В естественной среде организм  всегда подвержен влиянию сложного  динамического комплекса факторов, причем действие одних факторов изменяет (усиливает, ослабляет, деформирует) действие других, что создает проблемы для определения их роли и степени биотропности. Нарушения временной структуры организма возникают при рассогласовании  упорядоченности структуры его внутренних ритмов, причем причины этого рассогласования могут быть различными – внутренними (например, патология систем или органов)  и внешними (воздействие факторов окружающей среды).

Изучение динамики морфологических  структур сердца, наблюдаемых при смене сезона года, позволило Т.Ю.Моисеевой (2000, 2000а) по новому посмотреть на процессы адаптации с позиций информационно- термодинамического подхода и представить сезонные изменеия миокарда как закономерную эволюцию информационно-термодинамической системы.

Нарушение естественного хода биологических  ритмов, их взаимной согласованности, т.е. десинхроноз, является обязательным компонентом общего адаптационного синдрома (Алякринский Б.С., 1979),  и в этом отчетливо видна связь проблемы биологических ритмов с проблемой адаптации.

Степанова С.И. (1986)  рассматривает  адаптацию как непрерывно текущий процесс, не прекращающийся ни на одно мгновение от момента зарождения организма до момента смерти.  Адаптация рассматривается ею как процесс, имеющий как внешние, так и внутренние противоречия. Внешние противоречия адаптационного процесса заключаются в том, что организм находится в двойственных отношениях со средой: с одной стороны он стремится достичь согласованности с ней, а с другой - сохраняет некоторую рассогласованность, никогда не достигая идеальной гармонии,  “пригнанности” к среде. Это и позволяет ему, в конечном счете,  приспосабливаться, поскольку пребывание в некотором разладе со средой тренирует защитные механизмы организма, поддерживая их в активном “рабочем” состоянии, обеспечивая тем самым эффективную мобилизацию  сил в случае резкого изменения внешних условий.

Иногда адаптацией называют только одну из двух сторон этого процесса, а именно, только согласование с  ритмами внешней среды. Если придерживаться такой терминологической трактовки, то вторую сторону этого процесса, т.е. рассогласование, следует называть дезадаптацией, и таким образом феномен адаптации выступает как единство адаптации и дезадаптации,  и этот процесс имеет ритмическое течение.

Информация о работе Хроноструктура биоритмов сердца и факторы внешней среды