Физиология сердца

Автор работы: Пользователь скрыл имя, 25 Мая 2012 в 23:40, лекция

Краткое описание

Автоматия сердца – это его способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе. Автоматия сердечной мышцы бывает миогенной – когда импульсы появляются в самих мышечных волокнах, и нейрогенной – когда импульсы возникают в клетках нервных ганглиев. Миогенная автоматия обеспечивает сокращения сердца на ранних стадиях эмбрионального развития, а также некоторое время (несколько часов и даже суток) после перерезки всех идущих к сердцу нервов.

Содержание

1. Автоматия сердца.
2. Возбудимость сердца.
3. Сократимость сердца.
4. Гемодинамическая функция сердца.
5. Регуляция сердечной деятельности.

Прикрепленные файлы: 1 файл

6. Физиология сердца.doc

— 105.50 Кб (Скачать документ)

      ФИЗИОЛОГИЯ  СЕРДЦА 

    1. Автоматия сердца.
    2. Возбудимость сердца.
    3. Сократимость сердца.
    4. Гемодинамическая функция сердца.
    5. Регуляция сердечной деятельности.
 

      1. Автоматия сердца.

      Автоматия сердца – это его способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе. Автоматия сердечной мышцы бывает миогенной – когда импульсы появляются в самих мышечных волокнах, и нейрогенной – когда импульсы возникают в клетках нервных ганглиев. Миогенная автоматия обеспечивает сокращения сердца на ранних стадиях эмбрионального развития, а также некоторое время (несколько часов и даже суток) после перерезки всех идущих к сердцу нервов.

      В постэмбриональный период ритмическая деятельность сердца происходит благодаря наличию проводящей системы сердца. Так, в области ушка правого предсердия находится ведущий центр автоматизма — синусно-предсердного (синатриального) узла. Он является главным центром автоматии сердца – пейсмекером первого порядка. От него по рабочим клеткам миокарда и проводящим волокнам предсердий возбуждение достигает предсердно-желудочкового (атриовентрикулярного) узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Этот узел является пейсмекером второго порядка. Далее возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов).

      В обычных условиях частоту активности миокарда всего сердца в целом  определяет синусно-предсердный узел. При нарушении автоматизма синусно-предсердного узла ритмические сокращения сердца могут продолжаться благодаря импульсам, возникающим в атриовентрикулярном узле. Однако частота и сила сокращений при этом вдвое меньше, чем до нарушений в области синусно-предсердного узла. В случае невозможности передачи возбуждения к желудочкам они начинают сокращаться в ритме пейсмекеров третьего порядка – клеток пучка Гиса и волокон Пуркинье. При повреждении всех водителей ритма сердце останавливается (искусственные кардиостимуляторы).

      Синусно-предсердный  узел подчиняет себе все нижележащие образования проводящей системы, навязывая им свой ритм. Поэтому все отдельные части проводящей системы, хотя и имеют собственную активность, начинают работать в едином ритме. Явление, при котором структуры с замедленным ритмом генерации потенциалов усваивают более частый ритм других пейсмекерных участков называют усвоением ритма. Исходя из этого Гаскелл установил Закон градиента автоматизма сердцау всех позвоночных степень автоматии тем выше, чем ближе расположен  участок проводящей системы к синоатриальному узлу.

      Теории  автоматизма. Существует несколько теорий, объясняющих происхождение автоматизма (нейрогенная, эндогенная и др.). Наиболее популярна теория диастолического поля, в соответствии с которой в начальную фазу диастолы в проводящих миоцитах регистрируется мембранный потенциал, равный -90 мВ. В диастолу метаболизм сердечной мышцы изменяется и МП постепенно уменьшается, постепенно достигая критического уровня деполяризации. Когда уровень потенциала покоя уменьшается по сравнению с исходным приблизительно на 2 мВ, наступает резкое увеличение проницаемости мембраны вначале для Na+, а позднее для Са2+. В результате этих процессов МП приближается к критическому уровню деполяризации, при достижении которого в клетках синусно-предсердного узла возникает ПД. Все остальные отделы сердца подчиняются возникшему ПД — возбуждению, генерируемому в водителе ритма. 

      3. Возбудимость сердца.

      Возбудимость — свойство отвечать на раздражение электрическим возбуждением в виде изменений мембранного потенциала (МП) с последующей генерацией ПД. Под действием электрических, химических, термических и других раздражителей сердце способно переходить в состояние возбуждения. В основе процессов возбуждения лежит появление отрицательного электрического потенциала в первоначально возбужденном участке, который затем распространяется на соседние клетки. В итоге кардиомиоциты сокращаются. Механизмы возникновения сокращения в сердечной мышце принципиально не отличаются от таковых в скелетном мышечном  волокне и нервной клетке. Как и в скелетной мышце, при возникновении ПД происходит увеличение проницаемости мембран для ионов кальция. Это вызывает последовательную цепь событий, завершающуюся укорочением составляющих их миофибрилл. Но поскольку сократительные кардиомиоциты (точнее, их эндоплазматическая сеть) имеют ограниченный запас ионов кальция, ведущая роль принадлежит внеклеточному кальцию, который определяет скорость и амплитуду сокращения.

        Ионный механизм ПД волокон сердца позвоночных состоит в быстрой активации деполяризующим стимулом натриевых и натрий-кальциевых каналов при параллельной инактивации части калиевых каналов (это особое свойство К-каналов данного объекта). Последующая инактивация каналов входящих токов (Na-Ca-каналов) происходит медленно, активация реполяризующих К-каналов также задержан. Эти процессы обеспечивают так называемую фазу плато в процессе реполяризации на уровне, близком к пику ПД. Такая организация ПД клеток желудочка сердца обеспечивает его значительную продолжительность (250-300 мс, что в 150 раз больше, чем в скелетной мышце).

      При нанесении электрических раздражений  на работающее сердце в разные фазы его цикла оказывается, что независимо от величины и силы раздражения сердце не ответит, если это раздражение будет нанесено в период систолы, т. е. во время периода абсолютной рефрактерности. Период рефрактерности длится столько же времени, сколько продолжается систола.

      С началом расслабления возбудимость сердца начинает восстанавливаться и наступает период относительной рефрактерности. Нанесение в этот момент интенсивного стимула способно вызвать внеочередное сокращение — экстрасистолу. При этом пауза, следующая за экстрасистолой, длится больше времени, чем  обычно, это так называемая компенсаторная пауза. После фазы относительной рефрактерности наступает период повышенной возбудимости. По времени он совпадает с диастолическим расслаблением и характеризуется тем, что импульсы небольшой силы могут вызвать сокращение сердца. Период этот непродолжителен, и вскоре наступает восстановление уровня возбудимости.

      Длительный  абсолютный рефрактерный период, т. е. полная невозбудимость сердечной мышцы, предохраняет ее от быстрого повторного возбуждения до тех пор, пока не закончилась предыдущая волна деполяризации. Тем самым предотвращается нарушение нагнетательной функции сердца. Наличие фазы рефрактерности также препятствует возникновению кругового движения возбуждения по миокарду. В противном случае нарушилось бы ритмическое чередование систолы и диастолы. Длительная абсолютная рефрактерность исключает  возможность тетанического сокращения сердца, заставляя работать его в режиме одиночных сокращений. 

      4. Сократимость сердца.

      Сократимость — способность сердца сокращаться, реализуя тем самым насосную функцию. Несмотря на то, что миокард состоит на большого числа мышечных элементов, он всегда функционально реагирует как единое целое. В отличие от скелетной мышцы миокард не обнаруживает зависимости между силой раздражения и величиной реакции. На подпороговые раздражения сердце вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает полное сокращение миокарда. Дальнейшее нарастание силы раздражающего тока не изменяет величины сокращения. Таким образом, пороговое раздражение является одновременно и максимальным (закон «все или ничего»).

      Подчинение  сердечной мышцы закону «все или  ничего» объясняется ее структурной организацией. В сердечной мышце отдельные мышечные волокна соединены друг с другом вставочными дисками — протоплазматическими мостиками с очень малым электрическим сопротивлением. Поэтому при достижении раздражающим импульсом пороговой величины возбуждение распространяется, как по синцитию, и обязательно синхронно охватывает всю мышцу в целом.

      Вместе  с тем закон «все или ничего»  не абсолютен. Если раздражать мышцу  импульсами возрастающей частоты, не меняя  их силы, то величина сократительного ответа миокарда будет возрастать на каждый последующий стимул. Это явление получило название лестницы Боудича. Считают, что механизм возникновения явления лестницы состоит в том, что каждый последующий стимул попадает в фазу повышенной возбудимости мышцы, вызывая тем самым повышенную ответную сократительную реакцию.

      Сократимость  сердечной мышцы определяется особенностями строения ее волокон и соотношением между длиной и напряжением саркомера. Изменения сократительной силы миокарда, возникающие периодически, осуществляются посредством двух механизмов саморегуляции: гетерометрического и гомеометрического (см. ниже). 

      5. Гемодинамическая функция сердца.

      Работа  сердца проявляется последовательными  ритмическими сокращениями предсердий и желудочков, чередующимися с их расслаблениями. Сокращение любого отдела сердца называется систолой, расслабление — диастолой, общий покой — паузой. Систола предсердий происходит на фоне диастолы желудочков, вслед за тем возникает систола желудочков, а предсердия находятся в диастоле. Далее вся мышца сердца приходит в состояние покоя. После паузы наступает новое чередование его работы в том же порядке. Каждое повторение работы сердца и покоя называется одиночным циклом сердечной деятельности.

      5.1. Одиночный цикл сердечной деятельности

      В норме сердце человека совершает  в среднем 70 уд/мин. Это означает, что один сердечный цикл длится 0,8 с.

      Систола предсердий. Систола предсердий начинается при распространении возбуждения от синусно-предсердного узла и длится 0,1 с. В процесс сокращения вовлекаются все миокардиоциты — и правого, и (чуть позже) левого предсердия. В результате сжимаются устья полых вен, впадающих в предсердия, повышается внутрипредсердное давление. Вся кровь, которая за время диастолы предсердия накопилась в нем, изгоняется в желудочки. Благодаря этому, во-первых, возрастает кровенаполнение желудочков и, во-вторых создается сила, которая вызывает дополнительное растяжение сократительных кардиомиоцитов желудочков.

      Систола желудочков. Систолу желудочков принято делить на два периода — период напряжения и период изгнания крови. Она занимает 0,33 с. В период напряжения повышается давление внутри желудочков, закрываются атриовентрикулярные клапаны. Это происходит в том случае, если давление в желудочках становится чуть выше, чем в предсердиях. При этом происходит быстрое повышение внутрижелудочкового давения, т.к. полулунные клапаны еще не открыты. Из-за несжимаемости крови и неподатливости стенок желудочков в результате продолжающегося сокращения миокардиоцитов в полостях желудочков сердца возрастает давление. Когда давление в желудочках становится больше, чем в аорте и легочном стволе - открываются полулунные клапаны, что создает возможность изгнания крови в аорту и легочный ствол.

      В остальное время систолы желудочков — 0,25 с — происходит изгнание крови. В начале процесс изгнания совершается быстро — давление в выходящих из желудочков сосудах (аорте, легочном стволе) сравнительно небольшое, а в желудочках продолжает нарастать. По мере заполнения аорты и легочного ствола выходящей из желудочков кровью сопротивление выходящему потоку крови увеличивается и фаза быстрого изгнания сменяется фазой медленного изгнания.

      Диастола  желудочков занимает около 0,47 с, ее разделяют на протодиастолический период, период изометрического расслабления и период наполнения. Протодиастола – это промежуток времени от начала снижения давления внутри желудочков до момента закрытия полулунных клапанов, т.е. до того момента, когда давление в желудочках станет меньше давления в аорте и легочном стволе. Далее давление в желудочках продолжает очень быстро падать. Как только оно снижается почти до нуля, открываются атриовентрикулярные клапаны и желудочки наполняются кровью, которая накопилась в предсердиях.

      Наполнение кровью желудочков начинается с момента открытия атриовентрикулярных клапанов: вся кровь (около 33 мл) в фазу быстрого наполнения устремляется в желудочки. Затем наступает фаза медленного пассивного наполнения; в этот период кровь протекает «транзитом» сразу из вен через предсердие в желудочки. В завершение наступает систола предсердий, которая за 0,1 с «выжимает» дополнительно около 40 мл крови в желудочки. Эту фазу называют пресистолической.

      Итак, длительность систолы предсердий составляет 0,1 с, длительность диастолы — 0,7 с, у  желудочков соответственно 0,33 и 0,47 с. Эти  цифры указывают на то, что 40 % времени  миокардиоциты желудочков находятся в активном состоянии и 60 % — «отдыхают»».

      При учащении сердечной деятельности, например во время мышечной работы, при эмоциональном напряжении длительность сердечного цикла укорачивается прежде всего за счет сокращения времени общей паузы. Дальнейшее увеличение нагрузки приводит к укорочению продолжительности систолы.

      5.2. Тоны сердца

     Выслушивание (аускультация) стетофонендоскопом левой  половины грудной клетки позволяет  услышать два тона сердца: I тон и II тон сердца. I тон связан с закрытием АВ-клапанов в начале систолы, II — с закрытием полулунных клапанов аорты и лёгочной артерии в конце систолы. Причина возникновения тонов сердца — вибрация напряжённых клапанов тотчас после закрытия совместно с вибрацией прилежащих сосудов, стенки сердца и крупных сосудов в области сердца.

Информация о работе Физиология сердца