Аэрозоли: характеристика, упаковка, условия хранения

Автор работы: Пользователь скрыл имя, 12 Декабря 2013 в 15:36, реферат

Краткое описание

Аэрозоли (от греч. «аэро» - воздух и «золь» - раствор) – мельчайшие капельки жидкости или твердые частицы, взвешенные в газообразной среде.
Первое применение упаковок под давлением относится к концу XVII в., когда в продаже начали появляться газированные смеси. Русский химик М. С. Цвет (1872--1919 гг.) пользовался собственным приспособлением для получения аэрозольной струи. Первые патенты на устройства для получения аэрозоля выданы в Норвегии и США - авторы предложили применять хлорметил и хлорэтил в металлических или стеклянных упаковках.

Содержание

Введение ……………………………………………………..……..…3
Характеристика аэрозолей………………………………..……….…5
Аэрозольная упаковка……………………………………..…….…...6
Пропелленты ………………………………………………….….….12
Сравнительный анализ: спрей и аэрозоль……………………...….18
Технологический процесс производства аэрозолей…………...…21
Стандартизация и условия хранения препаратов в
аэрозольных упаковках…………………………………………..…25
Номенклатура аэрозолей…………………………………………...27
Заключение………………………………………………………..…28
Список литературы……………………………

Прикрепленные файлы: 1 файл

аэрозоли.doc

— 203.00 Кб (Скачать документ)

- при содержании пропеллента  от 30 до 50 вес.% получается грубое  распыление, которое почти не  применяется;

- составы, содержащие от 50 до 60 вес.% пропеллента, употребляются для  распыления жидкостей, предназначенных  для нанесения на поверхности;

- составы, содержащие от 70 до 90 вес. % пропеллента, используются для  распыления жидкостей с целью  образования облака из мельчайших капель, которое способно довольно долго удерживаться в воздухе.

Внутреннее давление в упаковке не влияет непосредственно на размер частиц, так как оно определяется не количеством сжиженного газа в  баллоне, а давлением его насыщенного  пара, которое остается постоянным, пока не будет израсходована последняя капля пропеллента. От внутреннего давления зависит в некоторой степени конус распыления и режим расхода содержимого.

Температура окружающей среды влияет на распыление следующим образом. Во-первых, давление насыщенного пара пропеллента находится в прямой зависимости от температуры, т. е. при понижении температуры – понижается, при повышении — повышается. Во-вторых, растворители улетучиваются быстрее при повышенных температурах, чем при низких. В-третьих, если используются вещества, вязкость которых сильно колеблется с изменением температуры, тогда и размеры образующихся частиц также будут зависеть от изменений температуры. Иногда при повышении температуры содержимое баллона расслаивается. Это явление исчезает при повышении температуры.

Летучесть растворителей также  влияет на размеры частиц. Чем более  легколетучи растворители, тем дисперсность распыления выше, и наоборот. Конструкция  используемых клапанов также определяет дисперсность струи.

Если продукт и пропеллент несовместимы, то в качестве пропеллентов в таких системах применяются сжиженные пропан, бутан, изобутан и другие парафиновые углеводороды. Водный раствор и жидкий пропеллент образуют две отдельные жидкие фазы, где вода образует нижний слой, а парафиновые углеводороды (плотностью 0,5 – 0,6) – верхний слой. Пары пропеллентов образуют газовую фазу.

Такие аэрозольные упаковки перед  употреблением не разрешается взбалтывать, т.к. жидкий пропеллент здесь служит только для снабжения парами газовой фазы. Последняя обеспечивает соответствующее давление в упаковке. В отличие от предыдущего случая, здесь характер распыления зависит от внутреннего давления. Пропеллент, не совмещенный с водным раствором, в самом процессе дробления жидкости в воздухе не участвует. Для этой цели применяются специальные конструкции распылительных головок, которые механически дробят струю на мелкие частицы. Характер распыления зависит от силы подачи продукта в головку.

Сжатые газы, используемые для распыления растворов, не обеспечивают выдачу продукта из аэрозольных упаковок, так как по мере работы такой упаковки давление в ней падает и может  сравняться с атмосферным раньше, чем весь продукт будет использован. Сжатые газы нерастворимы в воде или растворяются в ней очень мало. Если газ в какой-то степени растворяется в воде, то осуществляется полная выдача продукта из упаковки. Азот, который практически не растворяется в воде, не выдает из аэрозольной упаковки до 10% состава, а закись азота и углекислый газ, которые в небольших количествах растворимы в воде, обеспечивают полную выдачу продукта.

При использовании сжатых газов следует опасаться утечки пропеллента, так как даже незначительная утечка пропеллента может привести к неполной выдаче продукта. При распылении аэрозолей с помощью сжатых газов в упаковке имеется только одна жидкая фаза, и перед употреблением не требуется предварительно взбалтывать баллон.

Жидкости, которые при  выдаче из упаковки образуют пену, являются водными растворами активного вещества и пенообразователя. Так как пропеллент в этом случае не должен совмещаться с раствором, в подобных составах употребляют фреоны, а также парафиновые углеводороды. Они образуют в данном случае эмульсии, в которых дисперсионной средой является водный раствор, а дисперсной фазой — фреон. Количество пропеллента не превышает 20 вес. %. При хранении эмульсия может расслаиваться, поэтому перед употреблением необходимо аэрозольную упаковку взбалтывать. После попадания эмульсии в воздух, фреон начинает испаряться и пузырьки газа, находящиеся в жидком продукте, постепенно увеличиваясь в объеме, образуют пену, т. е. сравнительно грубую, высококонцентрированную дисперсию паров пропеллента в жидком продукте.

Структура пены зависит, во-первых, от состава, свойств и соотношений растворенных в воде веществ, во-вторых, от соотношения водного раствора и пропеллента и, в-третьих, от давления насыщенных паров последнего. При одинаковом количестве пропеллентов наиболее жесткая упругая пена получается там, где выше всего давление паров.

Пены могут быть устойчивые и неустойчивые. Для получения  устойчивых пен применяют стабилизаторы. Прочность и продолжительность  существования пены зависит от природы  и количества присутствующего пенообразователя, концентрирующегося в результате адсорбции на межфазной поверхности. К типичным пенообразователям для водных пен принадлежат поверхностно-активные вещества, синтезированные на основе спиртов и жирных кислот, а также мыла и мылоподобные вещества, белки и т. д. Для стабилизации пен употребляются различные стабилизаторы. Со временем пленки жидкости между пузырьками пены утончаются вследствие стекания жидкости, пузырьки лопаются, пары пропеллента улетучиваются, и вместо пены остается одна жидкая фаза — раствор пенообразователя в воде.

Выдача продукта в  виде пены из аэрозольной упаковки осуществляется при помощи специальных  распылительных головок.

Пасты при выдаче из аэрозольных  упаковок приобретают форму различных  конфигураций в зависимости от конструкции  сопла распылительной головки. В качество пропеллента здесь применяют сжатые газы, например, азот, закись азота, углекислый газ и т. д.

Растворимость этих газов  в пастах незначительна, сжатые газы служат только для выдачи паст из упаковки, при этом с продуктом не происходит никаких превращений, и в упаковке имеется двухфазная система.

 

 

Сравнительный анализ лекарственных форм: спрей и аэрозоль

 

     В настоящее время в медицинской практике широко применяются спреи и аэрозоли. Эти лекарственные формы часто используются для наружного применения, они предназначаются для нанесения лекарственного средства на рану, на кожу, на слизистые оболочки, а также для ингаляций. В спреях и многих аэрозолях примерно одинаковый принцип подачи лекарственного препарата, который содержится там в виде жидких и твердых частиц, взвешенных в газовой среде. Так как обе эти формы имеют одинаковый принцип подачи, то их часто путают. Однако между ними есть определенные различия, которые необходимо учитывать при выборе лекарственной формы.

     Спрей распыляется с помощью механического насоса, при этом давление во флаконе и давление вне его одинаковое.

     Аэрозоль распыляется за счет образования во флаконе избыточного давления, бывает непрерывного или дозирующего действия.

     Сравнивая лекарственные формы спрей и аэрозоль, нужно отметить, что в случае аэрозольных форм можно добиться более мелкодисперсного распыления. При использовании в качестве пропеллентов сжиженных газов (если продукт смешивается с пропеллентом) дробление частиц происходит по двум механизмам. Первый механизм состоит в приложении механического усилия, которое действует на жидкость, когда она выталкивается из баллона через отверстие распылительной насадки в атмосферу. Второй механизм заключается в испарении сжиженных газов, которые после выхода продукта, бурно испаряясь, дробят жидкость на мельчайшие частицы.

     Именно это свойство аэрозолей делает их востребованными для доставки лекарственных препаратов в отделы нижних дыхательных путей. Для того, чтобы лекарственный препарат попал в дыхательные пути дистальные ротоглотки, большинство распыляемых частиц должны иметь размеры 2-5 мкм. Терапия ингаляционными препаратами (в основном глюкокортикостероидами) является ведущим методом лечения у больных бронхиальной астмой. Она, в отличие от системной терапии, позволяет препаратам в необходимой концентрации достигать легких при малом системном воздействии. Учитывая, что распространенность этого заболевания во всем мире растет (в Европе по меньшей мере 25 млн. астматиков) и то, что доля дозированных ингаляционных аэрозолей составляет примерно 80% от общего количества применяемых ингаляционных устройств и по прогнозам Международного консорциума фармацевтических аэрозолей до 2010 г. потребление дозирующих ингаляторов будет увеличиваться на 5% ежегодно, становится понятной востребованность такой лекарственной формы, как аэрозоль.

     Лекарственная форма аэрозоль является более «жесткой» формой, чем спрей, в части побочных эффектов. Тем не менее, очень важна такая особенность аэрозолей, как генерация частиц оптимального размера, что делает их практически безальтернативными средствами при лечении бронхиальной астмы и хронических обструктивных болезней легких.

     При распылении в лекарственной форме спрей частицы гораздо крупнее, так как при распылении сила подачи продукта невелика, давление в баллоне, равно атмосферному и отсутствует дополнительный механизм диспергирования испарением сжиженного газа. В случае спрея размер распыляемых частиц в основном зависит от конструкции распылительных насадок и вязкости лекарственных композиций. Правильно составленные продукты (лекарственные композиции) для распыления должны обладать низкой вязкостью при высоких скоростях сдвига (которые существуют обычно непосредственно в момент распыла). Но именно это свойство делает применение лекарственных препаратов в форме спрея практически незаменимым, когда, например, необходима местная терапия воспалительных заболеваний ротоглотки (слизистой полости рта, глотки и гортани). В этих случаях применение препаратов в форме аэрозоль, особенно если пропеллент - сжиженный газ, приводит к тому, что значительная часть препарата (частицы с размерами меньше 5 мкм) не оседает в ротоглотке, а попадает в отделы нижних дыхательных путей, что приводит к перерасходу препарата и появлению нежелательных реакций.

 

 

Технологический процесс производства аэрозолей

 

     Производство аэрозолей включает основные технологические комплексные стадии:

-  изготовление баллонов  и клапанно – распылительных  устройств

- приготовление концентратов (препаратов из лекарственных и     

  вспомогательных веществ без пропеллента);

- получение смеси пропеллентов;

- заполнение баллонов;

- упаковка и маркировка;

- контроль качества.

     К производству аэрозолей предъявляются повышенные требования, поскольку такие производства отличаются повышенной пожаро- и взрывоопасностью, требуют организации складских помещений. К условиям хранения баллонов под давлением также предъявляются особые требования.

Аэрозольные лекарственные  формы производятся на заводах в  отдельных цехах, где осуществляются три основных комплекса технологических операций: приготовление препаратов (активных веществ), приготовление смеси пропеллентов (эвакуирующих газов) и, собственно, заполнение аэрозольных баллонов.

     Приготовление концентратов производится в закрытых реакторах. Готовый препарат из реактора перекачивают или передавливают в сборники, откуда он самотеком или под давлением подается на линию заполнения к аппарату дозировки препарата.

     Смеси пропеллентов приготавливаются в специальных помещениях. Технологические операции, связанные с приготовлением пропеллентов, различаются по способу транспортирования пропеллента к линии заполнения.

     Транспортирование осуществляется либо с помощью насоса, либо под давлением, создаваемым инертным газом - азотом или парами самих пропеллентов.

     Третий комплекс технологических операций - собственно заполнение. Линия заполнения может представлять собой либо серию отдельных полуавтоматов, либо автоматическое оборудование, компактно объединенное в одну линию согласно последовательности технологических операций.

     Линии заполнения аэрозольных баллонов классифицируют по производительности: 1) малой мощности (2-5 млн. уп. в год);

                                     2) средней мощности (10-15 млн. уп. в год);

                                     3) большой мощности (20 млн. уп. и более в год).

     На линиях большой и средней мощности устанавливается высокопроиз-водительное автоматическое оборудование. Линии малой мощности могут быть как автоматизированными, так и поточными, с использованием ручного труда.

Аппаратурная схема производства аэрозолей на линии представлена на рисунке 4.


Рис. 4. Аппаратурная схема производства аэрозолей.

     Баллоны загружают на ленту транспортера и подают в моечную машину 1, где они проходят стадию мойки, ополаскиваются, обрабатываются паром и сушатся. После этого по транспортеру 2 баллоны подаются на линию наполнения. С целью выравнивания производительности автоматов баллоны сначала попадают на стол-накопитель 3, а затем по конвейерному ленточному транспортеру 4 поступают на автомат для продувки 5 стерильным сжатым воздухом. Далее автоматическое дозируюшее устройство 6 наполняет баллон концентратом, после чего из него удаляется воздух. Для этих целей автоматическая головка 7 дозирует 1 — 2 капли сжиженного пропеллента. Испаряясь, пропеллент вытесняет воздух, находящийся в баллоне. Далее баллоны герметизируют. Этот процесс осуществляется на автомате 8 крепления клапана. Крепление клапана может осуществляться двумя способами: с помощью разжимных цанг или закаткой путем вращения роликов вокруг горловины баллона. После этого они поступают к дозаторам 9, которые впрыскивают в них пропеллент (хладон) под давлением. Порционные дозаторы могут быть роторного или линейного типа. После заполнения баллонов пропеллентом они проходят проверку на прочность и герметичность в водяной ванне 10 при температуре 45±5 °С в течение 15—20 мин (для стеклянных баллонов) или 5—10 мин (для металлических баллонов). При нагревании баллонов в ванне создается повышенное давление, и они или взрываются, или выделяют пропеллент, что легко заметно по поднимающимся в воде пузырькам. Бракованные баллоны извлекаются из ванны ручным способом. Некоторые линии производства аэрозолей снабжены специальными детекторами с газовыми анализаторами, контролирующими минимальные количества утечки пропеллента из баллонов. Негерметичные баллоны отбраковываются автоматически.

Информация о работе Аэрозоли: характеристика, упаковка, условия хранения