Методы решения задачи о рюкзаке

Автор работы: Пользователь скрыл имя, 29 Марта 2013 в 07:13, курсовая работа

Краткое описание

Цель данной работы – выделить основные методы решения задачи о загрузке, классифицировать и сравнить эти методы. Реализовать алгоритмы решения классической задачи о рюкзаке. Протестировать их и разбить их на две группы: точные и приближенные, сравнить по скорости решения, по точности. Определить в каких случаях следует использовать тот или иной подход к решению задачи. Алгоритмы решения можно разделить на два типа: точные и приближенные. Точные: применение динамического программирования, полный перебор, метод ветвей и границ (сокращение полного перебора). Приближенные алгоритмы: Жадный алгоритм.

Содержание

Введение
Глава 1 Задача о загрузке, рюкзаке, ранце. Постановка и NP-полнота задачи
1.1 Постановка задачи о рюкзаке
1.2 NP – полнота задачи
Глава 2 Методы решения задачи о рюкзаке
2.1 Классификация методов
2.2 Динамическое программирование
2.3 Полный перебор
2.4 Метод ветвей и границ
2.5 Жадный алгоритм
2.6 Сравнительный анализ методов
2.7 Модификации задачи
Заключение
Литература
Приложение 1
Приложение 2
Приложение 3
Приложение 4

Прикрепленные файлы: 1 файл

Документ Microsoft Office Word.docx

— 595.95 Кб (Скачать документ)

Методы решения  задачи о рюкзаке

Министерство образования  и науки Российской Федерации. Государственное  образовательное учреждение высшего  профессионального образования  «Вятский государственный гуманитарный университет»

 

ФАКУЛЬТЕТ ИНФОРМАТИКИ

Кафедра прикладной математики и информатики

 

КУРСОВАЯ РАБОТА

Методы решения  задачи о рюкзаке

 

Выполнил студент 3 курса  группы ПМ-31

Перевощиков Сергей Владимирович

Научный руководитель: к.п.н, доцент кафедры

прикладной математики и  информатики

Разова Елена Владимировна

 

Киров 2010

Оглавление

 

Введение

Глава 1 Задача о загрузке, рюкзаке, ранце. Постановка и NP-полнота  задачи

1.1 Постановка задачи о  рюкзаке

1.2 NP – полнота задачи

Глава 2 Методы решения задачи о рюкзаке

2.1 Классификация методов

2.2 Динамическое программирование

2.3 Полный перебор

2.4 Метод ветвей и границ

2.5 Жадный алгоритм

2.6 Сравнительный анализ  методов

2.7 Модификации задачи

Заключение

Литература

Приложение 1

Приложение 2

Приложение 3

Приложение 4

 

Введение

 

Классическая задача о  рюкзаке (о загрузке) известна очень  давно, ниже приведена ее формализация. Пусть есть N разных предметов, каждый предмет имеет вес wi и полезность pi , так же имеется максимальный вес W, который можно положить в рюкзак. Требуется собрать такой набор  предметов P, чтобы полезность их была наибольшей, а суммарный вес не превышал W.[6]. Конечно, никто не собирается писать программу, чтобы наилучшим  образом загрузить рюкзак, отправляясь  в поход или в путешествие, тут все слишком просто, и никто  не задумывается об этом, но существует и более широкое применение.

Задача о загрузке (задача о рюкзаке) и различные её модификации  широко применяются на практике в  прикладной математике, криптографии, экономике, логистике, для нахождения решения оптимальной загрузки различных  транспортных средств: самолетов, кораблей, железнодорожных вагонов и т.д.

Рассматриваемая нами задача является NP – полной, то есть для  нее не существует полиномиального  алгоритма , решающего её за разумное время, в этом и есть проблема. Либо мы выбираем быстрый алгоритм, но он как известно не всегда решает задачу наилучшим образом, либо выбираем точный, который опять же не является работоспособным  для больших значений. Существует несколько модификаций задачи.

Каждый предмет можно  брать только один раз.

Каждый предмет можно  брать сколько угодно раз.

Каждый предмет можно  брать определенное количество раз

На размер рюкзака имеется  несколько ограничений.

Некоторые вещи имею больший  приоритет, чем другие

Цель данной работы –  выделить основные методы решения задачи о загрузке, классифицировать и сравнить эти методы.

Реализовать алгоритмы решения  классической задачи о рюкзаке. Протестировать их и разбить их на две группы: точные и приближенные, сравнить по скорости решения, по точности. Определить в каких случаях следует использовать тот или иной подход к решению  задачи.

Алгоритмы решения можно  разделить на два типа: точные и  приближенные. Точные: применение динамического  программирования, полный перебор, метод  ветвей и границ (сокращение полного  перебора). Приближенные алгоритмы: Жадный алгоритм.

 

Глава 1 Задача о  загрузке, рюкзаке, ранце. Постановка и NP-полнота задачи

 

1.1 Постановка  задачи о рюкзаке

 

Задача о ранце –  одна из задач комбинаторной оптимизации. Классическая задача о ранце известна очень давно. Вот её постановка: Имеется  набор из N предметов, каждый предмет  имеет массу Wi и полезность Vi, i=(1,2..N), требуется собрать набор с  максимальной полезностью таким  образом, чтобы он имел вес не больше W, где W – вместимость ранца. Традиционно  полагают что Wi , Vi , W, P – целые неотрицательные  числа, но встречаются и другие постановки, условия в которых могут отличаться.[6] Возможны следующие вариации задачи:

Каждый предмет можно  брать только один раз. Формализуем. Пусть задано конечное множество  предметов  , для каждого , определена стоимость pi и вес wi , тогда нужно максимизировать , при ограничениях , где W-вместимость ранца, а xi=1, если предмет взят для загрузки и xi=0 если не взят. Если на размер рюкзака имеется только одно ограничение, то задача называется одномерной, в противном случае – многомерной.

Каждый предмет можно  брать m раз. Формализация аналогична, разница лишь в том, что xi принимает  значения на интервале (0..m).

Каждый предмет можно  брать неограниченное количество раз. Очевидно, что xi лежит в диапазоне (0..[W/wi]) квадратные скобочки означают целую  часть числа. [6]

Если же значения весов  и цен предметов не целые числа, такая задача будет называться непрерывной  задачей о рюкзаке, если же числа  целые, то соответственно дискретной. Например, если мы имеем дело с золотыми слитками, мы не можем их делить –  это дискретная задача, а если с  золотым песком, то это непрерывная  задача о рюкзаке.

1.2 NP – полнота  задачи

 

Большинство используемых алгоритмов имеют полиномиальное время работы, если размер входных данных – n, то время  их работы в худшем случае оценивается  как  где k это константа. Но встречаются задачи, которые нельзя разрешить за полиномиальное время. Это класс NP - полных задач. Некоторые задачи этого класса на первый взгляд аналогичны задачам разрешимым за полиномиальное время, но это далеко не так. Задача называется NP - полной, если для нее не существует полиномиального алгоритма.[3] Алгоритм называется полиномиальным, если его сложность O(N) в худшем случае ограничена сверху некоторым многочленом (полиномом) от N. Такие задачи возникают очень часто в различных областях: в булевой логике, в теории графов, теории множеств, кодировании информации, в алгебре, в биологии, физике, экономике, теории автоматов и языков. Считается что NP - полные задачи очень трудноразрешимы, а так же, что если хотя бы для одной из них удастся найти полиномиальный алгоритм, то такой алгоритм будет существовать для любой задачи из этого класса. Над поиском полиномиальных алгоритмов к таким задачам трудились многие ученые, и все же и все же при таком разнообразии NP - полных задач, ни для одной из них до сих пор не найдено полиномиального алгоритма.[10]. Из всего вышесказанного следует, что если известна NP - полнота задачи, то лучше потратить время на построение приближенного алгоритма, чем пытаться построить полиномиальный, или же, если это позволяют условия, использовать алгоритмы с экспоненциальной сложностью работы

 

Глава 2 Методы решения  задачи о рюкзаке

 

2.1 Классификация  методов

 

На практике очень часто  возникают NP-полные задачи, задач о  рюкзаке – одна из них . Конечно  надежд, на то что для них найдется полиномиальный алгоритм практически  нет, но из этого не следует что  с задачей нельзя ничего сделать. Во первых, очень часто удается  построить полиномиальный алгоритм для NP – полной задачи, конечно он даст приближенное, а не точное решение, но зато будет работать за реальное время. Во вторых, данные могут быть таковы, что экспоненциальный алгоритм, например переборный сможет работать на них разумное время. К точным методам  относятся: Полный перебор, метод ветвей и границ, ДП – программирование. К приближенным: Жадные алгоритмы. Полный перебор – перебор всех вариантов (всех состояний) –малоэффективный, но точный метод. Метод ветвей и границ – по сути сокращение полного перебора с отсечением заведомо “плохих” решений. ДП – алгоритм, основанный на принципе оптимальности Беллмана. Жадный алгоритм – основан на нахождении относительно хорошего и “дешевого” решения.

 

2.2 Динамическое  программирование

 

В основе метода динамического  программирования лежит принцип  оптимальности Беллмана:”Каково  бы ни было состояние системы перед  очередным шагом, надо выбирать управление на этом шаге так, чтобы выигрыш на этом шаге плюс оптимальный выигрыш  на всех последующих шагах был  оптимальным”. Проще говоря оптимальное  решение на i шаге находится исходя из найденных ранее оптимальных  решений на предшествующих шагах. Из этого следует, что для того чтобы  найти оптимальное решение на последнем шаге надо сначала найти  оптимальное решения для первого, затем для второго и так  далее пока не пройдем все шаги до последнего.

Имеется набор из N предметов. Пусть MaxW - объем рюкзака, Pi – стоимость i-го предмета, Wi – вес i-го предмета. Value [W, i] – максимальная сумма, которую  надо найти. Суть метода динамического  программирования – на каждом шаге по весу 1<Wi<W находим максимальную загрузку Value[Wi, i], для веса Wi. Допустим мы уже нашли Value[1..W, 1..i-1], то есть для  веса меньше либо равного W и с предметами, взятыми из 1..N-1. Рассмотрим предмет N, если его вес WN меньше W проверим стоит  ли его брать.

Если его взять то вес  станет W-Wi , тогда Value[W, i] = Value[W – Wi , i-1] + Pi (для Value[W – Wi , i-1]) решение уже найдено  остается только прибавить Pi.

Если его не брать то вес останется тем же и Value[W , i] = Value[W – Wi , i-1]. =Из двух вариантов выбирается тот, который дает наибольший результат. Рассмотрим алгоритм подробнее.

 

Рис 1.1

-

Рис 1.2

 

Рис 1.3

 

Динамическое программирование для задачи о рюкзаке дает точное решение, причем одновременно вычисляются  решения для всех размеров рюкзака  от 1 до MaxW, но какой ценой? Для хранения таблицы стоимости и запоминания  того, брался каждый предмет или  нет, требуется порядка O(N*MaxW) памяти, временная сложность равна O(N*MaxW) ;

Опишем основную логику решения: {Загружаем рюкзак если его вместимость = Weight} for Weight:=1 to MaxW do begin

for i:=1 to N do {берем предметы с 1 по N}

{если вес предмета  больше Weight}

{или предыдущий набор  лучше выбираемого}

if (W[i]>Weight) or (Value[Weight, i-1] >=

Value[Weight-W[i], i-1]+P[i]) then begin

{Тогда берем предыдущий  набор}

Value[Weight, i]:=Value[Weight, i-1];

{говорим что вещь i не  взята}

Take [Weight, i]:= false;

End

{иначе добавляем к  предыдущему набору текущий

предмет}

Else begin

Value [Weight, i]:=Value [Weight - W[i], i-1]

+P[i];

{говорим что вещь i взята}

Take [Weight, i]:= true;

End;

End;

Как было сказано ранее, алгоритм динамического программирования для  ‘рюкзака’ дает точное решение  путем использования дополнительной памяти O(N*MaxW), временная сложность  алгоритма так же будет порядка O(N*MaxW).

2.3 Полный перебор

 

Название метода говорит  само за себя. Чтобы получить решение  нужно перебрать все возможные  варианты загрузки. Здесь мы будем  рассматривать такую постановку задачи. В рюкзак загружаются предметы N различных типов (количество предметов  каждого типа не ограничено), каждый предмет типа I имеет вес Wi и стоимость Pi , i=(1,2..N). Требуется определить максимальную стоимость груза вес, которого не превышает W. Очевидна простая рекурсивная  реализация данного подхода Рис 1.4. Временная сложность данного  алгоритма равна O(N!). Алгоритм имеет  сложность факториал и может  работать лишь с небольшими значениями N. С ростом N, число вариантов очень  быстро растет, и задача становится практически неразрешимой методом  полного перебора. На рис 1.5 показано дерево перебора, дерево имеет 4 уровня. В каждом кружочке показан вес  предмета, корень дерева – нулевой  вес, то есть когда рюкзак пуст. Первый предмет можно выбрать четырьмя способами, второй – тремя, третий –  двумя, а дальше можем взять только один оставшийся предмет.

Рис 1.4

 

Рис 1.5

 

N - Количество предметов.  Пусть MaxW - объем рюкзака, Pi – стоимость  i-го предмета, Wi – вес i-го предмета.

{передаем Nab - номер набранной  группы, OstW-вместимость, stoim-цена набранного (еще не набрали нисколько)}

Procedure Search(Nab, OstW, Stoim:integer);

var i:integer;

begin

{здесь OstW-вес который  следует набрать из оставшихся. Stoim-стоимость текущего решения}

{Nab - набор предметов если  наполнили рюкзак и набрали стоимость больше чем имеется, то считаем это новым решением}

if (Nab > N) and (Stoim > Max) then begin

{найдено решение}

BestP:=NowP;

Max:=Stoim;

End

{иначе если количество  взятых <= обьема.

забиваем рюкзак дальше}

else if Nab<=N then

{иначе если набрано  меньше чем влазит}

for i:=0 to OstW div W[Nab] do begin

{идем от 0 до ост. места}

NowP[Nab]:=i;

{берем предмет Nab пока  есть место в ранце}

Search(Nab+1,OstW-i*W[Nab],Stoim+i*P[Nab]);

{после каждого взятия  предмета увеличиваем

стоимость набора и уменьшаем  место в рюкзаке

на вес предмета, так  же увеличиваем количество

раз взятия предмета}

end;

 

2.4 Метод ветвей  и границ

 

По существу данный метод - это вариация полного перебора, с исключениями заведомо не оптимальных  решений. Для полного перебора можно  построить дерево решений. Если у  нас есть какое то оптимальное  решение P, мы пытаемся улучшить его, но если на рассматриваемой в текущий  момент ветви решение заведомо хуже чем P то следует остановить поиск  и выбрать другую ветвь для  рассмотрения. Например, на рис 1.5. есть ограничение на вес рюкзака W=5. Тогда  используя метод ветвей и границ можно сократить дерево перебора до такого, рис 1.6. Видно сразу, что  количество вариантов для перебора уменьшилось сразу. А именно осталось 8 вариантов исхода, вместо 24 ранее. Но не всегда получается отсеять достаточно много вариантов чтобы скорость работы была заметно увеличена, всегда можно подобрать такие входные  данные, для которых метод ветвей и границ даст оценку по времени  идентичную полному перебору.

Рис 1.6

 

2.5 Жадный алгоритм

 

В случае применения жадного  алгоритма поступаем так: сортируем  предметы по убыванию стоимости единицы  каждого. , где Pi - относительная стоимость единицы предмета i, Wi - вес предмета i, Vi - стоимость предмета i. Всего N предметов. Пытаемся поместить в рюкзак все что помещается, и одновременно наиболее дорогое по параметру P. Оценим сложность метода. Для сортировки нам потребуется плюс проход по N предметам в цикле. Итого что в общем случае равно . Скорость работы относительно других алгоритмов высока, но если посмотреть более внимательно, видно, что точное решение мы получим не всегда. Обратим внимание на следующую таблицу Таб1.1.

 

Номер предмета (i)

Вес предмета (кг)

Цена (У.е)

Относительная цена (У.е/кг)

1

10

60

6

2

20

100

5

3

30

120

4


Как видно предметы уже  отсортированы. Пусть в рюкзак помещается 50кг, следуя алгоритму, берем первый предмет, затем второй, третий предмет  уже не помещается. Таким образом, в рюкзаке у нас 30кг стоимостью 160у.е, оставшееся место 20кг. Но если бы мы взяли второй и третий предметы, общий вес поместился в рюкзак, и стоимость его была бы 220у.е. Жадный алгоритм не дает оптимального решения, поэтому он является приближенным алгоритмом.[7] Оказывается качество решения можно улучшить, если сравнить полученный результат с максимальным коэффициентом Vmax ; . Предполагается, что все предметы не превосходят размера рюкзака, в противном случае их можно просто исключить из рассмотрения.[3]

Информация о работе Методы решения задачи о рюкзаке