Использование исследовательских заданий как средства формирования учебно-исследовательской деятельности обучающихся на уроках математ

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 18:29, дипломная работа

Краткое описание

В национальной образовательной инициативе «Наша новая школа» отмечается: «Новая школа - это институт, соответствующий целям опережающего развития. В школе будет обеспечено изучение не только достижений прошлого, но и технологии, которые пригодятся в будущем. Ребята будут вовлечены в исследовательские проекты и творческие занятия, чтобы научиться изобретать, понимать и осваивать новое, выражать собственные мысли, принимать решения и помогать друг другу, формировать интересы и осознавать возможности» (23).
В Федеральном Государственном Образовательном стандарте отмечена необходимость привести школьное образование в соответствие с потребностями времени, современного общества, которое характеризуется изменчивостью, многообразием существующих в нем связей, широким внедрением информационных технологий.

Содержание

ВВЕДЕНИЕ
I. ПСИХОЛОГО-ПЕДАГОГИЧЕСКИЕ И МЕТОДИЧЕСКИЕ АСПЕКТЫ ИСПОЛЬЗОВАНИЯ заданий исследовательского характера КАК СРЕДСТВА развития учебно-исследовательской ДЕЯТЕЛЬНОСТИ младших школьников
1.1 Понятие учебно-исследовательской деятельности, ее особенности в младшем школьном возрасте
1.2 Организация учебно-исследовательской деятельности младших школьников
1.3 Использование заданий исследовательского характера как средства развития учебно-исследовательской деятельности
II. ПРАКТИЧЕСКОЕ ОСВОЕНИЕ МЕТОДИЧЕСКИХ ОСНОВ ИСПОЛЬЗОВАНИЯ РАЗВИВАЮЩИХ УПРАЖНЕНИЙ НА УРОКАХ МАТЕМАТИКИ КАК СРЕДСТВа развития учебно-исследовательскОй деятельности
2.1 Изучение системы работы учителя МОУ «ООШ № 2» Емельяновой И. А. по использованию заданий исследовательского характера
2.2 Систематизация групп заданий исследовательского характера и их апробация в самостоятельной практической деятельности младших школьников
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Прикрепленные файлы: 1 файл

2 ДИПЛОМ исследоват навыки в матем оскол.rtf

— 4.15 Мб (Скачать документ)

Часть 3. Задания ученику

1 «Для каждой скорости вычисли и запиши значение пройденного пути».

Таблица 2.

Скорость (см/с) Время (с) Пройденный путь (см)

Рис. лягушки в желтом 40 6 ?

Рис. лягушки в красном 20 6 ?

Рис. лягушки в синем 10 6 ?

Рис. лягушки в голубом 5 6 ?

2) «Сравни скорости и пройденные пути при одинаковом времени движения».

Ученикам дается три таблички, в каждой их которых ситуация для сравнения задана рисунком двух лягушек, например:

(Рис. лягушки в желтом) по сравнению с (рис. лягушки в синем):

скорость больше в ___ раза,

меньше пройденный путь больше в ___ раза, меньше

На основе анализа заполненной таблицы 2 ученики делают вывод о количественной характеристике изменения пройденного пути: во сколько раз больше скорость, во столько же раз больше пройденный путь (при одинаковом времени движения). По таблице 1 такое задание нельзя было дать, т.к. значения скорости, подобранные учеником, могут быть не кратны друг другу. (24)

Если ученик правильно выполнил все задания, то оживает рисунок: по небу плывут облака, на берегу колышется камыш (рогоз) и т.п. Такая реакция компьютера на правильный ответ вызывает у детей эмоциональный отклик.

После выполнения такого задания целесообразно обратить внимание детей, какая величина в этом случае была постоянной, какую величину изменяли сами, а какая изменялась в зависимости от изменений второй. Полезно выяснить, можно ли поменять зависимые величины ролями, какую другую величину сделать постоянной, какую менять по своему желанию, и как будет изменяться третья. Дети могут предложить свои варианты ответов.

Затем полезно провести работу, направленную на еще более широкое обобщение. Для этого можно выяснить с детьми, какие еще величины, известные детям (в том числе по сюжетным арифметическим задачам) связаны такой же зависимостью, как скорость, время, пройденный путь. Спрогнозировать, какую исследовательскую работу с этими величинами можно провести.

Посмотрим на организацию работы детей по выполнению этого интерактивного задания на разных этапах исследовательской деятельности. В задании проблема исследования поставлена перед детьми в готовом виде. Однако учитель может так организовать работу на уроке, что, прежде чем обратиться к компьютеру, школьники примут активное участие в анализе исходной информации, в обнаружении, формулировке, осознании проблемы и, может быть, сами выдвинут гипотезу. Обычно выдвижение гипотезы в начальных классах происходит под руководством учителя. Это объясняется тем, что младшие школьники только начинают овладение исследовательской деятельностью. (Кларин М.В., Краевский В.В., Лернер И.Я., Фридман Л.М. и др.).

Выделяют три уровня исследовательской деятельности учащихся (1-4) в зависимости от степени их самостоятельности в проведении исследования (32). Исследовательская деятельность младших школьников находится ниже первого уровня, т.е. на подготовительном уровне. В конкретном классе многое зависит от развития детей, от опыта их исследовательской деятельности, от изобретательности учителя и др. В этом задании выдвижение гипотез может происходить под руководством учителя в процессе подбора скоростей и прикидки того, как это скажется на движении лягушки. Организация эксперимента в случае интерактивного задания продумана без детей, но они целенаправленно наблюдают, как он протекает, убеждаются в его результатах. И здесь учитель может повысить активность детей, организовав предварительное обсуждение того, какой эксперимент можно провести по этой проблеме. Последующие задания (после проведения экспериментальной работы) направляют мысль ученика на анализ данных, полученных в ходе эксперимента, и формулировку выводов. Поскольку работа детей за компьютером имеет строгие ограничения во времени, то задания для применения новых знаний приведены отдельно.

Положительными моментами выполнения исследовательского задания в интерактивном виде являются:

интерес детей, вызванный формой выполнения задания, способствует лучшему усвоению непростых математических закономерностей, составляющих содержание задания;

динамическое моделирование процесса, схожесть анимации с реальностью,

возможность повторения процесса (что не всегда возможно в реальной жизни),

фиксация экспериментальных результатов для каждого отдельного процесса, что не всегда возможно в реальности и что позволяет выполнить их анализ и обобщение, подвести детей к формулировке выводов;

использование разных видов моделирования для фиксации результатов (графического, аналитического, вербального), что позволяет детям воспринимать и обрабатывать информацию с помощью различных анализаторов, подключая не только логическое, но и образное мышление.

Главным объективным результатом использования интерактивных исследовательских заданий является развитие самого ученика за счет приобретения опыта исследовательской деятельности, за счет открытия, осмысления, новых знаний, их обобщения, за счет накопления опыта использования компьютерной поддержки в образовательных целях. У школьника эффективнее развиваются исследовательские умения, опыт творческой деятельности, мотивация, самостоятельность, формируется отношение к компьютеру как к средству познания, открытия нового. Задания исследовательского характера обеспечивают понимание школьниками учебного математического материала (16).

Важна роль таких заданий и в развитии вычислительной культуры школьников: они способствуют развитию мотивации вычислительной деятельности, усвоению различных видов школьного математического языка; воспитывают вдумчивое отношение к числам, раскрывают связи и зависимости между ними; позволяют осознать возможность изменения значения выражения при изменении входящих в него компонентов, способствуют функциональной пропедевтике; формируют опыт осуществления исследовательской деятельности и моделирования.

Ориентация современного общества на гуманистическое отношение к ученику предполагает создание в образовательном процессе условий для развития потенциала школьника, для введения его в пространство культуры. Становление вычислительной культуры (как вида математической культуры) мы считаем основной целью изучения вычислительного аспекта курса математики (19). Под вычислительной культурой мы понимаем учебную деятельность, направленную на развитие личности школьника в процессе осмысленного овладения вычислительным содержанием обучения (математическими знаниями и умениями предметного и общекультурного характера). Включение младших школьников в вычислительную деятельность способствует их становлению как субъектов, позволяет развивать мышление, учебно-познавательные мотивы, опыт творческой (в том числе исследовательской) деятельности, а также приобретать осознанные действенные знания и умения.

Учебную исследовательскую деятельность мы считаем одним из необходимых условий приобщения школьников к математической, в том числе вычислительной, культуре (15).

Учебная исследовательская деятельность -- это специально организованная учебная деятельность под руководством педагога, направленная на исследование различных объектов с соблюдением процедур и этапов, близких научному исследованию, но адаптированных к уровню познавательных возможностей школьников. Анализируя исследовательскую деятельность ученого и ученика, мы выделили их сходство и отличие (22).

Общим в исследовательской деятельности ученика и ученого мы считаем:

характер цели -- открытие нового;

структуру, т.е. циклическую последовательность следующих этапов:

анализ информации;

постановка проблемы;

выдвижение гипотезы;

проверка гипотезы (эксперимент, теоретическое обоснование);

формулировка выводов;

обобщение и применение новых знаний; (5)

методы исследования: наблюдение, эксперимент, сравнение, аналогия, моделирование, индукция, дедукция и др.;

наличие эвристического и логического компонентов.

Отличия исследовательской деятельности ученого и ученика мы видим:

в результатах исследовательской деятельности:

если открытия ученых объективны, то большинство открытий учащихся субъективны;

главным результатом исследовательской деятельности ученого является создание нового научного продукта (т.е. вклад в культуру общества) для школьника -- его развитие за счет приобретения опыта исследовательской деятельности и усвоения знаний о ней, а также открытие новых предметных знаний, которые характеризуются осмысленностью, действенностью, личностной значимостью;

в уровне самостоятельности выполнения: если ученый работает самостоятельно, то ученик -- с помощью учителя (в разной степени);

в уровне строгости обоснований: если ученый использует строгие (в логическом и содержательном плане) обоснования, то младший школьник -- практические действия с моделями исследуемых объектов, перебор вариантов (неполную математическую индукцию), опору на элементы изученных теоретических знаний.

Исследовательские задачи (решение которых предполагает выполнение нескольких этапов исследования) являются основной формой организации исследовательской деятельности учащихся. Их решение лежит в зоне ближайшего развития младших школьников.

Рассмотрим два способа, как можно сделать сложную для младших школьников исследовательскую деятельность более доступной и привлекательной. Первый способ состоит в предъявлении некоторых исследовательских задач в игровой форме, второй -- в использовании старинных задач и исторических сведений. Оба способа могут использоваться одновременно.

Известно, что у младших школьников учебная деятельность не сразу становится ведущей, еще долгое время игра имеет большое значение в их жизни. Игры на уроках математики в I-IV классах используют в основном для формирования вычислительных навыков, их автоматизации. Примером могут служить игры эстафеты и многочисленные игры вида «Забей мяч в ворота», «Собери букет», «Лучший рыбак» и т.п. Они полезны тем, что делают более привлекательной рутинную работу по выработке автоматизма и правильности вычислительных навыков. В этом случае занимательность носит внешний характер по отношению к содержанию вычислительной деятельности. Учащихся увлекает фабула, никак не связанная с процессом вычислений. (11)

Другая ситуация складывается, если игровые задания носят исследовательский характер, тогда в процессе игры у младших школьников возникает необходимость сосредоточиться на сути выполняемых вычислительных действий, исследовать их механизм. Игровые и занимательные задания исследовательского характера способствуют развитию таких качеств вычислительных умений, как осознанность, рациональность, действенность, правильность.

К числу таких заданий могут быть отнесены:

фокусы с разгадыванием задуманных чисел, со скоростным сложением трех или пяти многозначных чисел, со скоростным умножением или делением некоторых чисел;

задания с занимательными рамками и магическими квадратами;

софизмы (например, доказательство того, что 2 + 2 = 5);

игры типа «Кто первым получит 50» и т.п.

Такие игры и фокусы можно найти в книгах (6). Их исследовательский характер относится к разгадыванию способа выполнения фокуса или к выработке выигрышной стратегии игры.

Фокусы с разгадыванием задуманных чисел могут быть разного уровня сложности, который в основном определяется числами, набором и количеством выполняемых над ними действий. Простейшие фокусы включают 2-3 действия сложения и вычитания над числами в пределах 10, затем 20. Достаточно сложные фокусы предполагают действия с многозначными числами, например, одновременное сложение большого количества чисел или последовательное выполнение 5-6 разнородных действий. В одном фокусе может быть разгадано сразу несколько чисел, например, чей-то день, месяц и год рождения. Приведем примеры фокусов разного уровня сложности.

Фокус 1. Задумайте число, прибавьте к нему 14, к результату прибавьте 6, вычтите задуманное число. У вас получилось 20.

Формула для разгадывания фокуса:

а + 14 + 6 - а = 20. Ее можно проиллюстрировать на схематическом чертеже. Для обоснования можно воспользоваться доступными ученикам знаниями -- сочетательным свойством сложения: а + 14 + 6 = = а + (14 + 6) = а + 20; а также взаимосвязью суммы и слагаемых: а + 20 - а = 20 (из суммы а + 20 вычли слагаемое а, получили другое слагаемое 20).

Фокус 2 (старинный фокус из главы «Об утешных неких действиях, через арифметику употребляемых» учебника «Арифметика» Л.Ф. Магницкого) (32) состоит в угадывании, у кого из восьми человек (n1), на каком пальце (n2), на каком суставе (n3) находится перстень. Загадывающий умножает на 2 номер человека, прибавляет 5, умножает результат на 5, прибавляет номер пальца, умножает результат на 10, прибавляет номер сустава и сообщает полученное число тому, кто отгадывает. Пусть перстень находится у четвертого человека (n1 = 4), надет на пятый палец (n2 = 5), на второй сустав (n3 = 5). Выполнив вычисления, приведенные в таблице, можно отгадать, у кого находится перстень.

Если из результата (у нас число 702) вычесть 250, то в ответе (452) первая цифра обозначает номер человека, вторая -- номер пальца, третья -- номер сустава.

Формула для разгадывания в общем случае выглядит так:

((n1 _ 2 + 5) _ 5 + n2) _ 10 + n3 = n1 _ 100 + + n2 _ 10 + n3 + 250, в нашем случае: ((4 _ 2 + + 5) _ 5 + 5) _ 10 + 2 = 400 + 50 + 2 + 250. Разгадывание этого фокуса, описанного Л.Ф. Магницким более трехсот лет назад (1703), вызывает у младших школьников интерес и своим содержанием, и происхождением.

Информация о работе Использование исследовательских заданий как средства формирования учебно-исследовательской деятельности обучающихся на уроках математ