Возможности спутниковых систем навигации и связи. Глонасс и гранд навигатор.08

Автор работы: Пользователь скрыл имя, 10 Апреля 2014 в 17:45, автореферат

Краткое описание

Управление транспортом в режиме он-лайн, дает уникальную возможность всегда иметь точную и достоверную информацию о реальном местоположении и маршрутах движения транспорта. Появляется возможность сверить маршрутные листы с реальным маршрутом отображаемым на географической карте, с отчетом на котором перечислены точки маршрута, либо с полным списком пройденных адресов. Можно легко сделать выводы о нецелевом использовании транспортных средств, принадлежащих компании (доставка "левых" грузов, отклонение от маршрутов, использование служебного транспорта в личных целях), или о кражах и повреждении груза, топлива.
Этих и других возможностей позволяет достичь использование глобальных навигационных систем "WEB-GPS/GSM-Глонасс/GSM".
Целью написания дипломного проекта является разработка плана мероприятий по повышению эффективности функционирования АТП ГУП РМЭ "Пассажирские перевозки" путем внедрения системы мониторинга "WEB-GPS/GSM-Глонасс/GSM".

Прикрепленные файлы: 1 файл

Тема 4 Возможности спутниковых систем навигации и связи. Глонасс и гранд навигатор.08.docx

— 213.80 Кб (Скачать документ)

Благодаря технологии расширенного спектра, каждый спутник использует собственный код C/A для шифрования потока данных и разброса его по частотам. Данные модулируются и, в соответствии с кодом C/A, "разбрасываются" в пределах 1-МГц полосы относительно несущей частоты GPS L1 (1575,42 МГц). Можно представить вещание спутников по аналогии с зашифрованными пакетами TCP/IP, пакеты разных потоков данных перемешаны между собой, причём коды C/A в данном случае используются не только для выборки нужных пакетов среди других, но и для задания последовательности, в которой следуют пакеты. GPS-приёмник, таким образом, постоянно сканирует эфир и использует набор из 32 возможных паролей, чтобы расшифровать данные.

Современные технологии передачи GPS работают несколько по-другому. Код используется уже не для смены частотных каналов, поскольку GPS передаёт все данные на одной частоте 1575,42 МГц. Код C/A используется для модуляции несущей частоты в пределах 1 МГц. Поток навигационных данных генерируется на частоте 50 Гц (50 бит/с), поэтому его можно легко распределить в пределах 1-МГц частотного диапазона.

Спасибо Альберту Эйнштейну за его теорию относительности, в частности факту, что при высокой скорости движения ход часов меняется. Поскольку каждый GPS-спутник на орбите, по существу, является атомными часами, они должны корректироваться с учётом релятивистской теории относительности. По сравнению с часами на земле, GPS-часы замедляются разницей в скорости. Впрочем, благодаря правильным расчётам этот эффект можно нивелировать. Ход часов на орбите оказывается на 446,47 в 1012 медленнее. Представьте 2-ГГц процессор Intel Core 2 Duo на орбите: его реальная скорость будет меньше на 1 такт. Чтобы система GPS работала, спутники должны быть синхронизированы. Чем больше ошибок будет предупреждено, тем более точное определение мы получим.

Чтобы технология с расширенным спектром работала, приём и передача сигнала должны синхронизироваться, используя один и тот же код. В своё время Ламар и Антейл предлагали синхронизировать передачу с помощью механических часов на обоих концах системы, но в современной системе GPS используются специальные корреляторы. Корреляторы, по существу, и связывают теорию Ламар о передаче в расширенном спектре с современной технологией глобального позиционирования. Как? Коррелятор - это алгоритм, который автоматически синхронизирует процесс расшифровки в GPS-приёмнике с процессом шифрования на спутнике. Во время настройки на спутники процесс синхронизации GPS-приёмника на множественные одновременные передачи с группы спутников корректирует небольшие относительные различия в синхронизации. Они связаны с расстоянием между спутниками и приёмником.

Способы синхронизации, предложенные Ламар, для современных систем не подходят. Используются более тонкие механизмы. Однако, как только синхронизация будет достигнута, придётся учитывать задержку, с которой сигнал от спутника доходит до GPS-приёмника. И эта задержка напрямую превращается в расстояние.

Учитывая релятивистскую теорию Эйнштейна, система GPS синхронизирует часы. Ваш GPS-приёмник тоже пытается вычислить "системное" время GPS внутри себя. Но даже если спутники будут передавать пакеты в одно время, расстояния до них разные, поэтому и задержка, через которую пакеты достигнут приёмника, тоже будет разная. Корреляторы позволяют синхронизировать разные коды C/A с передачей данных соответствующими спутниками. Задержка у каждого спутника будет своя, поэтому и относительное временное смещение кода C/A по сравнению с "системным" временем будет для каждого спутника своим. Представьте себе обычную локальную сеть. Время ping-запроса позволяет оценить, насколько клиент расположен ближе или дальше. И задержки коррелятора тоже напрямую связаны с расстоянием до конкретного спутника.

Как можно видеть, коррелятор в приёмнике сдвигает копию одного из 32 возможных кодов C/A. Сдвинув код C/A на один шаг, коррелятор проверяет, появляются ли точные данные. Когда сдвиг кода C/A даст нужную информацию, данные считаются полученными. Для определения, информация это или "мусор", коррелятор использует специальные алгоритмы. После корреляции можно расшифровать навигационные данные Корреляция хороша тем, что позволяет узнать примерное расстояние до спутника. А, зная расстояние до 4 спутников, можно высчитать ваше положение на Земле.

Каждый пользователь GPS-приёмников знает, что на определение координат требуется время. Это, увы, недостаток GPS. Некоторые устройства настраиваются быстрее других, но какое-то время всё равно требуется. Как мы теперь знаем, корреляторы позволяют выровнять код C/A передатчика с кодом C/A приёмника. Вообще, механизм действия коррелятора очень напоминает атаку хакера: коррелятор пытается дешифровать сигнал методом подбора кода. Чем больше корреляторов работают параллельно, тем быстрее будет находить координаты GPS-приёмник. У GPS-чипсетов SiRF Star II и III используется 2 000 и 200 000 корреляторов, соответственно. Последние чипсеты uBlox Antaris 5 GS используют более миллиона корреляторов. Правило простое: чем больше корреляторов, тем быстрее будут найдены координаты.

Благодаря актрисе Хеди Ламарр несколько десятилетий назад были заложены основы передачи данных с расширенным спектром. Навигационная система Navstar (GPS) является самым большим излучателем с расширенным спектром, поскольку она покрывает каждый сантиметр нашей планеты. Даже несколько пугает, поскольку из-за расширенного спектра энергия сигнала размывается по столь широкому диапазону, что оказывается даже ниже фонового шума нашей вселенной. Благодаря корреляторам и сдвигу кодов C/A в поисках соответствия со спутником, можно рассчитать расстояние до разных спутников. Синхронизированные по времени барабаны пианол, которые использовали Хеди Ламарр и Джордж Антейл, являются своеобразным прообразом современных систем корреляции. Поэтому мы вряд ли ошибёмся, назвав Хеди Ламарр одним из изобретателей, заложивших основы современной системы GPS.

1.2 Оптимальная  структура спутниковых систем  местоопределения автотранспорта

В настоящее время у многих ведомств и организаций возникает необходимость оперативного слежения за местоположением и состоянием подвижных объектов, а также передачи на них оперативной информации.

Практически все заинтересованные диспетчерские службы в настоящее время имеют в своем распоряжении те или иные технические средства, позволяющие осуществлять контроль/слежение за передвижением своих объектов. Однако существующие средства не являются совершенными, обладают малой степенью автоматизации и имеют малую достоверность.

В последние годы настоятельно ставится задача о внедрении новых надежных технических средств, которые позволили бы осуществлять автоматизированный сбор диспетчерской информации с подвижных объектов, а также передавать информацию на объекты. Технически эта задача может быть выполнена целым рядом средств, как традиционных, так и спутниковых. На практике, однако, ни одна из возможных систем так и не была реализована на территории России.

Создание такой системы позволит обеспечить автоматизированный сбор информации о дислокации подвижных объектов, обслуживаемых в рамках данной системы вне зависимости от их местоположения на Земном шаре, т.е. в глобальном режиме. При этом средства системы будут автоматически вычислять географические координаты местоположения объектов и направлять их в соответствующие диспетчерские пункты пользователей. Информация может быть также запрошена с объекта по инициативе диспетчера из диспетчерского пункта и имеется возможность передать на объект необходимую информацию.

Средства системы позволяют не только решать коммерческие цели управления, но и обеспечат повышение безопасности движения объектов и будут способствовать охране человеческой жизни. Данные о дислокации аварийных объектов могут быть переданы в соответствующие поисково-спасательные службы.

Изучения, проведенные в России показали, что имеются следующие основные категории потенциальных пользователей, заинтересованные в получении оперативной информации с подвижных и стационарных объектов:

1. Администрации, эксплуатирующие  автомобильный транспорт.

2. Организации, эксплуатирующие  подвижной железнодорожный состав  и специальные средства.

3. Организации, эксплуатирующие  подвижные автомобильные объекты.

4. Научные организации, проводящие  с помощью подвижных технических  средств изучение окружающего  пространства.

5. Организации, эксплуатирующие  магистральные трубопроводы и  иные удаленные объекты.

6. Предприятия топливно-энергетического  комплекса.

7. Сельскохозяйственные предприятия.

8. Коммерческие структуры.

Анализ требований потенциальных пользователей к системам сбора оперативной информации позволил выявить следующее:

1. Необходимость автоматического  определения географического местоположения  объекта, не требующего вмешательства  оператора в работу оконечного  устройства. При этом требования  к точности определения местоположения  варьируются от нескольких метров  до десятков километров. Некоторые  категории объектов движутся  по строго определенным маршрутам (поезда, автомобили), в то время, как другие имеют большую свободу перемещений.

2. Требования к оперативности  доставки информации от оконечного  устройства до пункта сбора  данных пользователя изменяются  от нескольких минут до нескольких  часов.

3. Количество определений - от нескольких раз в месяц  до нескольких раз в час.

4. Возможность передачи  дополнительной информации с  подвижного объекта и на объект. При этом выявлен достаточно  широкий диапазон информации, подлежащей  передачи.

5. Наличие простых и  недорогостоящих оконечных устройств  пользователей, которые при необходимости  могли бы работать от автономных  источников питания.

В использовании системы слежения за местоположением подвижных объектов проявили заинтересованность ряд ведомств и организаций (МВД, МПС и др.). Отдельно стоит отметить заинтересованность в приобретении средств мониторинга автотранспортными предприятиями.

Система должна обеспечивать возможность слежения за передвижением ценных грузов, легкового автотранспорта и других подвижных объектов в реальном масштабе времени с точностью определения местоположения до 50 метров, а также получения от объектов аварийной информации.

В состав системы должны входить главный и региональные диспетчерские центры, в которые информация от объектов должна поступать одновременно.

Должна быть предусмотрена возможность запросов о местоположении и состоянии объектов из диспетчерских центров, а также передача на них информации.

Тип передаваемой информации - цифровой.

Терминалы, устанавливаемые на подвижные объекты, должны быть устойчивы к вибрационным воздействиям, иметь малые габариты, вес (не более 1 - 1,5 кг) и энергопотребление. Электропитание должно осуществляться от автономного источника.

Необходимо предусмотреть возможность автоматического срабатывания терминалов в аварийных ситуациях.

Терминалы должны обеспечивать бесперебойную работу в диапазоне температур от - 50 до +50 °С при влажности воздуха при 30 °С - 99%.

Антенны терминалов должны иметь малые габариты и обеспечивать бесперебойную связь при скорости ветра до 30 м/сек.

 

1.3 Анализ  систем мониторинга автотранспорта GSM и Глонасс

Системы GPS и ГЛОНАСС во многом подобны, но имеют и различия. Они разрабатывались с учетом наиболее вероятных областей применения. Поэтому ГЛОНАСС имеет преимущества на высоких широтах, а GPS - на средних.

Таблица 1. Основные характеристики навигационных систем ГЛОНАСС и GPS

Характеристки

ГЛОНАСС

GPS

Количество спутников (проектное)

24

24

Количество орбитальных плоскостей

3

6

Количество спутников в каждой плоскости

8

4

Тип орбиты

Круговая (S=0+-0,01)

Круговая

Высота орбиты

19100 км

20200 км

Наклонение орбиты, град

64,8+-0,3

55 (63)

Период обращения

11 ч 15,7 мин.

11 ч 56,9 мин.

Способ разделения сигналов

Частотный

Кодовый

Навигационные частоты, МГц:

L1 L2

1602,56 - 1615,5 1246,44 - 1256,5

1575,42 1227,6

Период повторения ПСП

1 мс

1 мс (С/А-код) 7 дней (Р-код)

Тактовая частота ПСП, МГц

0,511

1,023 (С/А-код) 10,23 (Р,Y-код)

Скорость передачи цифровой информации, бит/с

50

50

Длительность суперкадра, мин

2,5

12,5

Число кадров в суперкадре

5

25

Число строк в кадре

15

5

Погрешность* определения координат в режиме ограниченного доступа:

горизонтальных, м вертикальных, м

не указана

18 (P,Y-код) 28 (P,Y-код)

Погрешности* определения проекций линейной скорости, см/с

15 (СТ-код)

<200 (С/А-код) 20 (P,Y-код)

Погрешность* определения времени в режиме свободного доступа, нс в режиме ограниченного доступа, нс

1000 (СТ-код) -

340 (С/А-код) 180 (P,Y-код)

Система отсчета пространственных координат

ПЗ-90

WGS-84

* Погрешности в  определении координат, скорости  и времени для системы ГЛОНАСС - 0,997, для GPS - 0,95.

Информация о работе Возможности спутниковых систем навигации и связи. Глонасс и гранд навигатор.08