Теория катастроф

Автор работы: Пользователь скрыл имя, 03 Ноября 2014 в 16:03, реферат

Краткое описание

Мы привыкли к стабильности и постоянству. Мы ступаем по твердой поверхности Земли и верим, что она всегда будет служить нам опорой. Мы знаем, что она всегда будет служить нам опорой. Мы знаем, что вслед за зимой придет лето, станет тепло и солнечно, и так будет всегда. Мы думаем, что мир вокруг нас не может внезапно измениться, и, исходя из этого, формируем свой образ жизни, планируем свои действия.
Такая привычная, “бытовая” точка зрения на устойчивость нашего мира нашла свое отражение в науке XVIII века, когда создавалось классическое естествознание. Его основой стал математический язык дифференциального и интегрального исчислений; считалось, что все зависимости можно описывать непрерывными функциями, для которых характерно небольшое изменение значения функции при малых приращениях аргументов. Казалось бы логично: приложено чуть больше усилий – получен чуть больший результат… более того, если математические модели не отвечали этим условиям, то они считались некорректными, а значит, лишенными реального содержания.
Но… легкий поворот выключателя приводит в действие управляющие механизмы, и открываются створки плотины, мощные потоки воды обрушиваются на лопатки турбин, заставляя крутиться многотонный вал генератора. Легкий удар по детонатору вызывает взрыв, при котором мгновенно высвобождается энергия, сравнимая с энергией маленького солнца.

Прикрепленные файлы: 1 файл

Мы привыкли к стабильности и постоянству.docx

— 36.36 Кб (Скачать документ)

Еще одним “флагом катастрофы” служит так называемое “критическое замедление”, когда множество усилий не приводит к сколько-нибудь заметному изменению ситуации. Такой флаг был вывешен на историческом пути нашей страны в 80-е годы, когда колоссальные средства, вкладываемые в экономику, например в сельское хозяйство, уходили словно в песок, ничего существенно не изменяя.

Нетрудно заметить, что если исследователь наткнулся на один из этих “флагов”, то управляющие параметры можно поменять так, чтобы стало возможным обнаружить и другие “флаги”, которые обязательно должны проявить себя в подходящих условиях. Правда, в рассмотренном нами примере с выбором института экспериментировать вовсе не обязатель но и даже нежелательно, если только вы не хотите пожертвовать собой ради подтверждения теории. Но в иных условиях, чтобы убедиться, что система действительно может претерпеть резкий скачок состояния, имеет смысл поискать и более представительный набор “флагов катастроф”.

Предопределенность или свобода выбора?

Теория катастроф является одной из частей более общей математической теории - качественной теории сложных нелинейных систем. Эта теория изучает общие принципы, проявляющиеся в различных ситуациях, и помогает лучше понять механизм действия природных сил. Один из таких механизмов описывает взаимодействие судьбы и свободы выбора, и математическая модель этого взаимодействия оказывается очень близка к мифологической.

В религиозных и философских системах судьба человека связывается с его предназначе нием, с его жизненным путем, определенным свыше. В мифах античности судьбой человека распоряжаются дочери Зевса Мойры, непреодолимость рока символизируется водами подземной реки Стикс. Если механизм рока запущен, то любое поведение героя неотвратимо влечет его к развязке (как, например, в ситуации с Эдипом, которому было предсказано убить своего отца), однако всегда существует один-единственный поступок, казалось бы, незначительный в сравнении с масштабом последующих событий, который запускает их череду; герой мог бы поступить иначе, и тогда мифическая история пошла бы совсем по другому пути. Примером этому может служить решение Париса отдать яблоко Афродите, что вызывает целый ряд неотвратимых последствий, вплоть до Троянской войны и путешествия Одиссея.

Вопросы о том, что определяет развитие мира, волновали умы мудрецов еще с древних времен. Анаксимандр из Милета (610-540 до н. э.) учил: “Природа вечна, но в своем развитии она проходит через определенные фазы”. Гераклит из Эфеса (520-460 до н. э.) утверждал, что мир есть вечно существующий живой огонь, мерно разгорающийся и мерно потухающий. Следуя им, Эмпедокл из Акраганта (490-430 до н.э.) считал, что мир проходит через бесконечную череду этапов – время господства “любви” сменяется периодом господства “вражды"

и т. д. Основная идея античной философии: мир существует вечно, и сегодняшнее его состояние – лишь одна из многих ступеней его пути. Однако единая основа мира неподвижна – об этом говорили и Платон, и философы-элеаты. Идея о том, что вселенной управляют математические законы, традиционно приписывается Пифагору. Он учил: “все есть число” и “числа правят миром”. Все явления мира гармоничны, а законы гармонии задаются отношениями целых чисел, как частоты нот в консонансном аккорде.

Итак, гармония вечна и неизменна. Судьба же – это движение, она определяет наше будущее, неизвестное сейчас. Математические принципы развития появились значительно позже, в конце XVII века, с развитием исчислений бесконечно малых: описав взаимодей ствие частей системы и ее начальное состояние, можно было однозначно определить ее эволюцию. Казалось, тайна вселенной раскрыта – ее будущее уже определено настоящим, все предрешено, и все можно предсказать, решив дифференциальное уравнение, хотя и очень сложное.

Выразителем этой крайней точки зрения считают Бенедикта Спинозу (1632-1677): он утверждал, что в природе вещей нет ничего случайного, существует только необходимость, обусловленная законами природы. Случайность же приходится привлекать там, где мы чего-то не знаем.

В XVII-XIX веках этой детерминистской точки зрения придерживались большинство ученых. Предопределенность была синонимом объективности научных знаний, возможность точных предсказаний рассматривалась как величайший триумф науки.

Но трудно поверить в то, что миллионы лет назад уже были точно запрограммированы и появление жизни, и все катаклизмы и войны, и все радости и напасти рода человеческого, и все наши поступки, порой такие непредсказуемые и неожиданные. Возможно ли такое?

Наука ХХ века дала множество математических моделей, которые свидетельствуют, что в специально организованной среде действительно могут возникать новые формы, не существовавшие ранее. Одна из них была предложена Дж. Конвеем как забавное развлечение, но из-за множества аналогий вдруг приобрела глубокий смысл. Речь идет об игре “Жизнь”. (Подробное описание этой игры под названием “Эволюция” см. в журнале “Наука и жизнь” #8, 1971 г.; #8, 1972 г.) Правила ее очень просты: на тетрадном листе бумаги в ячейках прямоугольной сетки “живут” клеточки, подчиняясь простым правилам: если число соседей клетки больше трех или меньше двух, то она умирает. В пустой же ячейке с тремя “живыми” соседями может родиться новая клетка. Колония клеток демонстрирует разнообразное поведение в зависимости от начального состояния. Некоторые структуры исчезают, другие достигают стационарного поведения. Есть сообщества клеток, которые движутся, словно живые, – к ним относится так называемый “планер”, или “парусник”. Есть и более сложные конфигурации, например “планерное ружье”, – эта колония клеток через 30 поколений возвращается в исходное состояние, рождая при этом один планер. Есть и “пожиратель планеров” – конструкция, которая поглощает налетающий на нее парусник и вновь поджидает очередную жертву.

Еще один пример. Простейшие математические формулы, определяющие расположение точек на плоскости, порождают необычайно сложные по своей структуре геометрические объекты – фракталы (см. “Наука и жизнь” #4, 1994 г.). Их узоры складываются из бесконечных повторений и вариаций фрагментов. Колоссальное разнообразие этих форм достигается изменением параметров в математическом законе их построения.

Эти примеры свидетельствуют о том, что в самой природе среды, в ее структуре может быть заложена возможность творить невероятное количество форм. Среда, словно первобытный хаос, наделена множеством структур. Проявить то или иное потенциальное состояние среды можно, определенным образом организовав ее начальную структуру: расставив живые клеточки, “зерна” жизни в первом примере или задав параметры закона повторения фрагментов в примере с фракталами.

Казалось бы, тезис Спинозы подтверждается, и мы – люди, привыкшие считать себя свободными в выборе своего жизненного пути, – тем не менее действуем в соответствии с неумолимыми законами судьбы, предписанными нашим окружением. И все наши мысли, стремления, эмоции, вдохновения и открытия оказываются следствием изначального распределе ния частичек вселенной...

Но рассмотрим еще один пример – игру в бильярд. Начальная пирамида разбивается первым шаром – порядок сменяется хаосом. Если толкнуть все шарики так, чтобы они покатились в обратном направлении, приобретя те же скорости, то, как предписывают математические законы движения, все они из хаоса соберутся в первоначальную пирамидку. Однако попытки осуществить такое движение на практике не приводят к успеху – дело в том, что сколь угодно малая ошибка в задании скоростей ведет к значительным расхождениям траекторий в будущем. Эта неустойчивость, свойственная развитию любой достаточно сложной системы, не позволяет полностью предсказать ее поведение на длительный период времени (см. “Наука и жизнь” #5, 2001 г.).

Математический анализ моделей сложных нелинейных открытых систем во второй половине ХХ века привел к возникновению новой науки – синергетики, открывшей общие принципы эволюции и механизмы их осуществления. В конце второго тысячелетия от Рождества Христова наука вновь вернула нас к древнему пониманию сущности мироздания – к представлению о двух силах, двух противоположных тенденциях, благодаря которым мир развивается и преображает ся, удерживаясь все же в относительном равновесии.

Сегодня на уровне математической теории можно утверждать, что любая достаточно сложная система, взаимодействующая со своим окружением, проходит в своем развитии определенные этапы. Вначале из неупорядоченных частей системы вдруг складываются и с колоссальной скоростью начинают расти множество структур – “новых форм”. За счет противоположной, “разрушительной” тенденции скорость роста постепенно замедляется, некоторые формы исчезают, другие приобретают устойчивость. Эта тенденция рано или поздно одерживает верх, погружая все в изначальный хаос, и наступает кризис, порождающий структуры следующего этапа.

Таким образом, математическая модель развития совпадает с мифологической: согласно воззрениям Древней Индии, бог Брахма творит мир, упорядочивая хаос, а Шива разрушает его. В промежутках между двумя рождениями мир устойчив благодаря уравновешивающему началу – богу Вишну. В античных мифах порождающее божество Дионис выхватывает из хаоса бессчетное множество форм, а гармонизирующее начало – Аполлон – уравновешивает его взрывную творческую энергию, успокаивает бешеный рост форм, придает миру соразмерность. Нарушение гармонии - конфликт, необходимый для развития, – погружает систему в животворящий хаос, дающий ростки новой жизни.

Хаос – неизбежный, обязательный атрибут жизни любой достаточно сложной системы. Геометрическим образом хаоса может служить запутанный клубок ниток: по такой же замысловатой, никогда не повторяющейся траектории движется система в период кризиса. Так ведет себя атмосфера Земли – хотя погода сегодня похожа на вчерашнюю, она всегда чем-то от нее отличается, и нет двух одинаковых дней. Так работают сердце и мозг – на их регулярные ритмы наложен хаотический фон, и его исчезновение ведет к скорой смерти пациента.

Этап кризиса характеризуется крайней неустойчивостью: малейшее движение в сторону от траектории может заставить систему сменить сценарий своего развития. Она может отправиться “на второй круг” своей эволюции, лишь немного отличающийся от предыдущего, а может ценой незначительного усилия перейти на принципиально иную, новую орбиту движения. Ведь, действительно, в клубке ниток рядом всегда есть нити, которые ведут в другом направлении, надо лишь “перескочить” на них – и наша судьба резко изменится.

В математических моделях выйти из кризиса можно за счет изменения так называемых внешних параметров – рано или поздно они изменят среду так, что в ней исчезнет неустойчивость, порождающая хаос, и клубок траекторий вытянется во множество почти параллельных нитей. Резкие изменения сценария развития на таких этапах спокойного развития практически невозможны – ведь все нити идут в одном направлении, и требуется долгое путешествие с нитки на нитку, чтобы существенно поменять направление движения.

Образом преодоления кризиса в мифологических концепциях служит ковчег – корабль, несущий семена новой жизни по бушующему морю во время потопа. Ковчег преодолевает хаос благодаря вере капитана, знающего, что потоп не вечен, имеющего ясную цель и осознающего свою ответственность за будущее. Универсальные математические сценарии развития тоже говорят о преходящем характере хаоса. И чтобы не застрять в бессмысленных метаниях, надо успокоиться, не упустить момент окончания кризиса, уловить нужную тенденцию и без лишних затрат выйти на устойчивую траекторию.

Сейчас предмет изучения науки – мир, для которого характерны кризисы и обвальные процессы, все чаще встречающиеся в нашей повседневной жизни; мир неустойчивостей, когда малые и локальные изменения влекут за собой глобальные последствия; мир, в котором идут процессы становления и возникновения порядка из хаоса; мир, в котором чередующиеся этапы предопределенности и непредсказуемости образуют причудливую череду событий, которые нас окружают и частью которых мы являемся.

Неустойчивые модели долгое время считались некорректными и “изгонялись” из науки. Отражением этого стала точка зрения Ж. Адамара, французского математика, сформулирован ная им в начале XX века. Вдохновленный успехами математической физики в точном описании явлений реального мира, он ввел понятие корректной задачи как задачи, для которой решение существует, единственно и устойчиво. Задачи, для которых не выполнено хотя бы одно из этих требований, он считал неинтересными для практики.

Однако жизнь показала, что неустойчивость – необходимый атрибут нашего мира. Тем интереснее точка зрения Анри Пуанкаре, соотечественника и современника Адамара. Роберт Гилмор, автор книги “Catastrophe Theory for Scientists and Engineers”, пишет: “Основы современного подхода к определению качественных изменений в поведении решений обыкновенных дифференциальных уравнений были заложены почти 100 лет назад Пуанкаре... Эти работы... значительно опередили свое время. Сам Пуанкаре не смог реализовать намеченную им исследовательскую программу, так как был уже тяжело болен, а из его современников только А. Ляпунов следовал этой программе при изучении критических решений уравнений. После Ляпунова работы по теории бифуркаций практически прекратились... Такая ситуация сохранилась до 30-х годов, пока советские математики А. Андронов и Л. Понтрягин... вновь не обратились к идеям Пуанкаре. Особое оживление в этой области наблюдалось в 1950-67 гг.”

Глобальность изменений во взглядах на мир и на его описание математическими моделями характеризует следующий исторический факт. В 60-х годах XX века сэр Джон Лайтхил, президент Международной ассоциации математических исследований, посчитал своим долгом принести извинение просвещенному сообществу за то, что в течение 300 лет математики вводили человечество в заблуждение, так как концепция абсолютного детерминизма оказалась далеко не безусловной.

Илья Пригожин, лауреат Нобелевской премии, создатель неравновесной термодинами ки, утверждает: “Покуда мы требовали, чтобы все динамические системы подчинялись одним и тем же законам, хаос был препятствием к пониманию. В замкнутом мире классической рациональности поиск знания легко мог приводить к интеллектуальному снобизму и высокомерию. В открытом мире, который мы сейчас учимся описывать, теоретическое знание и практическая мудрость нуждаются друг в друге”.

Информация о работе Теория катастроф