Современные достижения естествознания

Автор работы: Пользователь скрыл имя, 23 Февраля 2014 в 21:21, реферат

Краткое описание

В ХХ – начале ХХI века естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. В 20-30-е годы ХХ века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих сотни тысяч и миллионы долларов. Наука становится профессией огромного числа людей. Объём научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и объёма научной информации, а также числа людей, занятых в науке. В результате – феноменальные достижения в естествознании. Наука изменила не только сферу производства, но и быт людей. Радио, телевидение, магнитофоны, компьютеры становятся обиходными вещами, также как одежда из синтетических тканей, стиральные порошки, лекарства и т.д.

Содержание

Введение ______________________________________________________ 3
1. ОСНОВНЫЕ ДОСТИЖЕНИЯ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ_ 4
1.1. Важнейшие открытия в области физики ___________________________ 4
1.2. Важнейшие открытия в области химии _________________________ 6
1.3. Синтетическая теория эволюции _______________________________ 7
1.4. Носитель генной информации _________________________________ 10
1.5. Современные биотехнологии ___________________________________ 14
2. ГЕННЫЕ ТЕХНОЛОГИИ. ПРОБЛЕМЫ КЛОНИРОВАНИЯ ______ 17
2.1. Достижения генной инженерии ________________________________ 17
2.2. Проблема клонирования ___________________________________ 20
Заключение ___________________________________________________ 27
Список использованной литературы _____________________________ 28

Прикрепленные файлы: 1 файл

Современные достижения естествознания реферат.docx

— 71.45 Кб (Скачать документ)

Содержание

Введение  ______________________________________________________ 3

1. ОСНОВНЫЕ ДОСТИЖЕНИЯ  СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ_ 4

1.1. Важнейшие открытия в области физики ___________________________ 4

1.2. Важнейшие открытия  в области химии _________________________ 6

1.3. Синтетическая теория  эволюции _______________________________ 7

1.4. Носитель генной информации _________________________________ 10

1.5. Современные биотехнологии ___________________________________ 14

2. ГЕННЫЕ ТЕХНОЛОГИИ. ПРОБЛЕМЫ КЛОНИРОВАНИЯ ______ 17

2.1. Достижения генной  инженерии ________________________________ 17

2.2. Проблема клонирования ___________________________________ 20

Заключение ___________________________________________________ 27

Список использованной литературы _____________________________ 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


ВВЕДЕНИЕ

В ХХ – начале ХХI века естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. В 20-30-е годы ХХ века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих сотни тысяч и миллионы долларов. Наука становится профессией огромного числа людей. Объём научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и объёма научной информации, а также числа людей, занятых в науке. В результате – феноменальные достижения в естествознании. Наука изменила не только сферу производства, но и быт людей. Радио, телевидение, магнитофоны, компьютеры становятся обиходными вещами, также как одежда из синтетических тканей, стиральные порошки, лекарства и т.д.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. ОСНОВНЫЕ ДОСТИЖЕНИЯ  СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

 

1.1. Важнейшие  открытия в области физики.

В настоящее время в  области  фундаментальной теоретической  физики выделяются три уровня строения материи: микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов размерностью до 16 см.; макромир -  мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах; мегамир – мир огромных космических масштабов и скоростей, расстояние в которых измеряется световыми годами, а время существования космических объектов – миллионами и миллиардами лет.1

Основными достижениями микромира  являются: установление строения атома, открытие деления урана и цепной реакции, работы по получению управляемой термоядерной реакции, построение теории элементарных частиц.

После открытия электрона  было установлено существование  большого числа новых элементарных частиц. В характеристике элементарных частиц различают четыре вида взаимодействия: сильное взаимодействие, электромагнитное взаимодействие и слабое взаимодействие. Гравитационное взаимодействие – самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах. Основные положения современной атомистики могут быть сформулированы следующим образом:

1) атом является сложной  материальной структурой, представляет  собой мельчайшую частицу химического элемента;

2) у каждого элемента  существуют разновидности атомов (содержащиеся в природных объектах или искусственно синтезированы);

3) атомы одного элемента могут превращаться в атомы другого; эти процессы осуществляются либо самопроизвольно (естественные радиоактивные превращения), либо искусственным путём (посредством различных ядерных реакций).

К основным достижениям в области мегамира можно отнести модель Большого взрыва, установление источника энергии Солнца, астрономические исследования вселенной.

Современная космология начала складываться в 20-е годы ХХ века на основе созданной Энштейном общей теории относительности. В 1922 году советский математик и геофизик А.А.Фридман нашёл решение уравнений общей теории относительности для замкнутой расширяющейся Вселенной. Он установил, что искривлённое пространство не может быть стационарным: оно должно или расширяться, или сжиматься. Открытое  в 1929 году американским астрономом Э.Хабблом «красное смещение» для всех далёких источников оказалось пропорциональным расстоянию до источника, что подтверждало гипотезу о расширении видимой части Вселенной. В 1965 году американские ученые А.Пензиас и Р.Вилсон с помощью радиотелескопа установили, что во Вселенной имеется так называемое фоновое радиоизлучение, названное советским ученым И.С.Шкловским реликтовым. Таким образом, два экспериментально установленных положения – расширение Вселенной и реликтовое излучение – являются убедительными доводами в пользу так называемой теории «большого взрыва».2

По  современным представлениям, вначале  был взрыв. Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100млрд градусов К. При такой температуре молекулы, атомы и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 секунды после взрыва, несмотря на очень высокую температуру, была огромной: в 4000 миллионов раз больше, чем у воды. В конце первых трёх минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов К. Плотность вещества также снизилась, но ещё была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра тяжёлого водорода (дейтерия) и ядра гелия. Однако вещество Вселенной в конце первых трёх минут состояло в основном из фотонов, нейтрино, и антинейтрино. Только по истечении нескольких сотен лет начали образовываться атомы водорода и гелия. Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звёзд.3

В макрофизике можно выделить достижения в трёх направлениях: в области электроники, в области создания лазеров и их применения, в области  высокотемпературной сверхпроводимости.

 

1.2. Важнейшие  открытия в области химии

Химию принято подразделять на пять разделов:  неорганическая, органическая,  физическая, аналитическая и химия высокомолекулярных соединений. С помощью неорганической химии разрабатываются методы синтеза и глубокой очистки веществ. Многие процессы проходят в условиях горения и низкотемпературной плазмы. Химические реакции часто сочетают с получением волокнистых, слоистых и монокристаллических материалов, с изготовлением электронных схем. Неорганические соединения применяются для всех отраслей промышленности, включая космическую технику, как удобрение и кормовые добавки, ядерное и ракетное топливо, фармацевтические материалы.  Органическая химия – наиболее крупный раздел химической науки. Общепризнано огромное значение химии полимеров. Так, ещё в 1910 году С.В.Лебедев разработал промышленный способ получения бутадиена, а из него каучука. В 1938 году Р.Планкет открывает тефлон, создаются «вечные» смазочные масла (пластмассы и эластомеры), широко используемые космической и реактивной техникой, химической и электротехнической промышленностью. В 30-40-е годы исследования фосфорорганических соединений А.Е.Арбузовым привели к открытию лекарственных препаратов, отравляющих веществ, средств защиты растений и др. Химия ароматических и гетероциклических соединений породила производство душистых и лекарственных веществ. Проникновение органической химии в смежные области – биохимию, биологию, медицину, сельское хозяйство – привело к изучению свойств, установлению структуры и синтезу витаминов, белков, нуклеиновых кислот, антибиотиков, новых средств ускорения роста растений и средств борьбы с вредителями. В 1963 году В.Виньо синтезировал инсулин, также были синтезированы окситоцин (пептидный гормон), вазопрессин (гормон, обладающий антидиуретическим действием), брадикинин  (обладает сосудорасширяющим действием).  Физическая химия объясняет химические явления и устанавливает их общие закономерности. В результате развития квантовой химии многие проблемы химического строения веществ решаются на основании теоретических расчётов; наряду с этим широко используются физические методы исследования – рентгеноструктурный анализ, дифракция электронов, спектроскопия, методы, основанные на применении изотопов. Аналитическая химия рассматривает принципы и методы изучения химического состава вещества. Включает количественный и качественный анализ. Современные методы аналитической химии связаны с необходимостью получения полупроводниковых и других материалов высокой частоты.4

 

1.3. Синтетическая  теория эволюции

Основанием всем системы  современной эволюционной биологии выступает синтетическая теория эволюции, принципиальные положения которой были заложены работами С.С.Четверикова, Р.Фишера, С.Райта, Дж.Холдейна, Н.П.Дубинина и др.

Элементарной клеточкой  синтетической теории эволюции является популяция - совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Элементарной единицей наследственности выступает ген. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием таких эволюционных факторов, как мутационный процесс, популяционные волны, изоляция, естественный отбор.

Таким образом, в синтетической  теории эволюции на первый план выступает не оногенез - совокупность преобразований, происходящих в организме от зарождения до конца жизни, т.е. индивидуальное развитие организма, а развитие популяций.5

Онтогенетический уровень  организации жизни на Земле связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов, а популяционный уровень индивидуален.

Популяция - это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида.

Виды - это системы популяций. Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию.

Популяции - это генетические открытые системы, т.к. особи из разных популяций иногда скрещиваются. Виды являются наименьшими генетически  закрытыми системами. Совокупность совместно обитающих популяций разных видов живых организмов называется биоценозом.

Биоценоз - совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой и приспособленностью к условиям окружающей среды (например, биоценоз озера, леса и т.д.). Совокупность растений на участке с одинаковыми природными условиями, которые взаимодействуют друг с другом и со своим окружением, называется фитоценозом или растительным сообществом. Растительное сообщество (фитоценоз) - совокупность видов растений на однородном участке, находящихся в сложных взаимоотношениях между собой и с условиями окружающей среды (лес, степь, луг и т.д.). Фитоценоз характеризуется определенным видовым составом, строением и сложением. Фитоценоз - это часть биоценоза.6

Биоценозы входят в качестве составных частей в еще более  сложные системы, представляющие собой  взаимообусловленный комплекс живых  и абиотических компонентов, связанных  между собой обменом веществ  и энергией - в биогеоценозы.

Биогеоценоз - это однородный участок земной поверхности с  определенным составом живых (биоценоз) и абиотических косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов и динамическим взаимодействием между ними (обменом веществ и энергии). Термин предложил В.М.Сукачев (1940 г). Иногда этот термин употребляется как синоним экосистемы. Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы), называется биогеоценология.

В развитии экосистем большую  роль играют организмы, способные самостоятельно синтезировать органическое вещество из неорганических соединений. Эти организмы называются автотрофами.

Автотрофы - это организмы, синтезирующие из неорганических веществ (главным образом воды, двуокиси углерода, неорганических соединений азота) все необходимые для жизни органические вещества, используя энергию фотосинтеза (все зеленые растения - фототрофы) или хемосинтеза (некоторые бактерии - хемотрофы).7

Автотрофы служат первичной  биотической основой для сложения биогеоценозов.

Организмы, использующие для  питания органические вещества, произведенные другими организмами, называются гетеротрофами. К гетеротрофным организмам относится человек, все животные, грибы, большинство бактерий, вирусов.

Автотрофные растения и микроорганизмы представляют жизненную среду для  гетеротрофов. Складывается биогеоценотический комплекс, который может существовать веками.

Пространство, включающее околоземную  атмосферу и наружную оболочку Земли, освоенное живыми организмами и находящееся под влиянием их жизнедеятельности, называется биосферой.

Биосфера Земли образуется всей совокупностью биогеоценозов, связанных между собой круговоротом веществ и энергии. Она представляет собой область активной жизни, охватывающую нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин "биосфера" введен в 1875 г. Э.Зюссом. Учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создал В.И.Вернадский (1926 г.).

 

1.4. Носитель  генной информации

Информация о работе Современные достижения естествознания