Современная генная инженерия: успехи и проблемы

Автор работы: Пользователь скрыл имя, 04 Мая 2014 в 22:26, контрольная работа

Краткое описание

Генетика по праву может считаться одной из самых важных областей
биологии. На протяжении тысячелетий человек пользовался генетическими
методами для улучшения полезных свойств возделываемых растений и выведения
высокопродуктивных пород домашних животных, не имея представления о
механизмах, лежащих в основе этих методов. Судя по разнообразным
археологическим данным, уже 6000 лет назад люди понимали, что некоторые
физические признаки могут передаваться от одного поколения к другому.
Отбирая определенные организмы из природных популяций и скрещивая их между
собой, человек создавал улучшенные сорта растений и породы животных,
обладавшие нужными ему свойствами.

Содержание

ВВЕДЕНИЕ…………………………………………………………………3
I. Современное представление о гене……………………….................5
1.Строение гена…………………………………………………………5
2.Основные понятия и методы генетики……………………………5
II. Генная инженерия……………………………………………………..7
I) Успехи
1. Возможности генной инженерии, проект "Геном человека"..8
2. Преимущества генной инженерии………………………………11
3. Наиболее впечатляющие достижения…………………………..12
II) Проблемы
1. Против генной инженерии……………………………………….14
PS: Генетически модифицированные продукты
1) Экологические риски……………………………………………16
2)Медицинские риски………………………………………………17
3)Социально-экономические риски………………………………18
2.Научные факты опасности генной инженерии…………………18
ЗАКЛЮЧЕНИЕ………………………………………………………………20
Литература…………………………………………………………………….21
Библиографический список использованной литературы в интернете

Прикрепленные файлы: 1 файл

КСЕ контрольная.docx

— 69.25 Кб (Скачать документ)

признака и характер потомства каждого гибрида в отдельности.

 2.    Цитогенетический метод позволяет изучать кариотип   (набор  хромосом)

клеток организма и выявлять геномные и хромосомные мутации.

3.      Генеалогический метод предполагает изучение  родословных  животных  и

человека и позволяет устанавливать тип наследования (например,  доминантный,

рецессивный) того или иного признака, зиготность  организмов  и  вероятность

проявления признаков в будущих поколениях. Этот метод широко используется  в

селекции и работе медико-генетических консультаций.

 4.     Близнецовый  метод  основан  на  изучении  проявления   признаков   у

однояйцевых   и   двуяйцевых   близнецов.   Он   позволяет   выявить    роль

наследственности и внешней среды в формировании конкретных признаков.

 5.      Биохимические методы исследования  основаны  на  изучении  активности

ферментов   и   химического    состава    клеток,    которые    определяются

наследственностью. С помощью этих методов можно  выявить  генные  мутации  и

гетерозиготных носителей рецессивных генов.

  6.    Популяционно-статистический  метод  позволяет  рассчитывать   частоту

встречаемости генов и генотипов в популяциях.

       Введем  основные  понятия  генетики.  При  изучении   закономерностей

наследования  обычно  скрещивают   особи,   отличающиеся   друг   от   друга

альтернативными (взаимоисключающими) признаками (например, желтый и  зеленый

цвет,  гладкая  и  морщинистая  поверхность  горошин).  Гены,   определяющие

развитие   альтернативных    признаков,    называются    аллельными.     Они

располагаются в одинаковых локусах (местах) гомологичных (парных)  хромосом.

Альтернативный признак и соответствующий ему ген, проявляющийся  у  гибридов

первого поколения, называют доминантным, а  не  проявляющийся  (подавленный)

называют рецессивными.  Если  в  обеих  гомологичных  хромосомах   находятся

одинаковые аллельные гены (два доминантных или два  рецессивных),  то  такой

организм  называется  гомозиготным.  Если  же  в   гомологичных   хромосомах       

локализованы разные гены одной аллельной пары,  то  такой  организм  принято

называть гетерозиготным по данному признаку. Он образует два  типа  гамет  и

при скрещивании с таким же по генотипу организмом дает расщепление.

       Совокупность  всех  генов  организма  называется  генотипом.  Генотип

представляет собой взаимодействующие друг с другом и влияющие друг на  друга

совокупности генов. Каждый ген испытывает на себе воздействие  других  генов

генотипа и сам оказывает на них влияние,  поэтому  один  и  тот  же  ген   в

разных генотипах может проявляться по-разному.

       Совокупность  всех свойств и признаков организма  называется фенотипом.

Фенотип  развивается   на   базе   определенного   генотипа   в   результате

взаимодействия с условиями  внешней  среды.  Организмы,  имеющие  одинаковый

генотип, могут отличаться друг от друга в зависимости от условий развития  и

существования.  Отдельный   признак  называется  феном.   К   фенотипическим

признакам относятся не только внешние  признаки  (цвет  глаз,  волос,  форма

носа, окраска цветков и тому подобное), но и анатомические  (объем  желудка,

строение печени и тому  подобное),  биохимические  (концентрация  глюкозы  и

мочевины в сыворотке крови и так далее) и другие.

 

 

                                   II. Генная инженерия.

 
Генная инженерия это новая, революционная технология, при помощи которой ученые могут извлекать гены из одного организма и внедрять их в любой другой. Гены это программа жизни - это биологические конструкции, из которых состоит ДНK и которые обуславливают специфические характеристики, присущие тому или другому живому организму. Пересадка генов изменяет программу организма - получателя и его клетки начинают производить различные вещества, которые, в свою очередь, создают новые характеристики внутри этого организма. При помощи этого метода исследователи могут менять особые свойства и характеристики в нужном им направлении, например: они могут вывести сорт томатов с более длительным сроком хранения или сорт соевых бобов, устойчивых к воздействию гербицидов. Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени. Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми

в микроскопе изменениями строения хромосом. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировал

 

    I )  У С П Е Х И  

          1. Возможности генной инженерии, проект "Геном человека"

 
Естественно успешные манипуляции с генами растений и животных не могли не привести к достаточно скользкому вопросу: а что же человек? Если возможно улучшать животных, то почему бы не заняться человеком. Однако для начала необходимо все-таки разобраться с генным набором человека. Так, в 1990 году появилась инициатива по картированию человеческих хромосом, состоящих из 26-30 тысяч генов. Проект получил простое название "Геном человека" и ориентировочно должен был представить полную карту генома где-то к 2005 году. В проект входят исследовательские группы из разных стран, а с конца 90-х гг. создаются специальные компании, основной задачей которых является облегчение и ускорение коммуникации между такими группами. К началу 2001 года уже полностью картированы 2 хромосомы: 21 и 22. Однако основной сенсацией прошлого года все таки стало открытие группой Крега Вентера общей карты генома человека. Ученые говорят, что если сравнивать эту карту с обычными, то вряд ли бы по ней можно было бы попасть в магазин на соседней улице, однако в любом случае сам факт ее существования говорит о начале эпохи патентирования генов, а это, в свою очередь, поднимает множество вопросов уже не биологического толка, а этического и правового. Хотя ученые и заявляют, что основная цель картирования генома - это необходимость разобраться в том, как работает человеческое тело, чтобы эффективнее противостоять разнообразным заболеваниям, а еще такие знания могут значительно облегчить создание новых медицинский препаратов, все же становится очевидным необходимость как правового регулирования вопроса: как и что можно делать с человеческим телом, так и ответа на вопрос: где надо остановиться? Может ли человек уподобиться Творцу и сам заняться созданием новых существ? Формирование карты генома человека часто сравнивают с такими революционными событиями, как высадка человека на Луну, например. Однако сейчас наблюдается одно существенное различие: если космические программы - это одна из задач государства, то группы - участники проекта, как правило, имеют частное финансирование, следовательно, авторские права на их разработки будут иметь негосударственные компании. А что они будут с ними делать? Представим себе, что в недалеком будущем, карта будет составлена достаточно точно, и каждый человек может быть, таким образом, описан. Возникает вопрос - кто будет владеть доступом к этой информации? В какой мере человек сможет сохранять в неприкосновенности самую "интимную" информацию о себе? Не будут ли работодатели отказывать в приеме на работу человеку, у которого в генах заложена предрасположенность к какому-либо виду

рака? Возможно ли будет медицинское страхование в ситуации, когда геном каждого отдельного человека будет представлять информацию о всех потенциальных болезнях? Тони Блэр заявил о необходимости составления генетических портретов преступников. И вроде бы ученые готовы работать над тем, чтобы открыть специальные гены, отвечающие за девиантное поведение людей. Однако многих специалистов уже сейчас пугает перспектива того, что в недалеком будущем общество переложит решение разнообразных проблем - преступности, бедности, расизма и т.д. - на генетиков и генную инженерию: "мол, все дело в генах, если что-то не в порядке, то это не забота общества, а генетическая предрасположенность отдельных людей". Ведь, в общем-то многие забывают, что только совсем некоторые редкие болезни обусловлены исключительно набором генов, а те заболевания, которые мы обычно называем генетическими - рак, сердечно-сосудистые нарушения - только отчасти имеют генетическую природу, во многом вероятность их появления в первую очередь зависит от тех шагов, которые предпринимает сам человек и общество, а поэтому не может быть ничего страшнее социума, умывающего руки в такой ситуации. Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов:                                                                                                                                                  1. Рестрикция - разрезание ДНК, например, человека на фрагменты.                                               2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.                           3. Трансформация - введение рекомбинантных плазмид в бактериальные клетки.               Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.                                                                                                                                           4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека. Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней. Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции. Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий

за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию. Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке всё-таки будет функционировать геномная медицина и генная инженерия. Ни один ученый, действительно твердо стоящий на платформе научной объективности, никогда не скажет, что при помощи чего-то можно излечить абсолютно все или что что-то "абсолютно безопасно", особенно, если это касается генной инженерии, которая манипулирует отдельно взятыми уровнями Природного Закона, игнорируя при этом его целостность. Как мы уже видели на примере ядерных исследований, энергия, высвобождающаяся в результате таких манипуляций, может быть огромной, но и возможная опасность, также огромна. Когда ядерная технология находилась на стадии разработки, никто не мог предположить, что всего через несколько лет человечество окажется под угрозой многократного уничтожения, которое в состоянии обеспечить обе противоборствующие силы в равной степени. И когда ядерная энергия начала использоваться для производства электричества, также никто не знал, что в результате мы получим миллионы тонн радиоактивных отходов, которые будут сохранять свою токсичность еще десятки тысяч лет. Никто не знал ничего об этом, но мы все же сделали прыжок вслепую, создав тем самым серьезные проблемы для самих себя и для будущих поколений. Поэтому мы должны быть очень осторожны с использованием генной инженерии, которая работает на том уровне, где содержится полная информация о самой глубинной структуре жизни. Понадобились миллионы лет для того, чтобы жизнь на Земле развилась до теперешнего состояния высоко сбалансированной, динамичной экосистемы со всем тем неисчислимым многообразием форм жизни, известным нам сегодня. Сейчас мы живем в такое время, когда через поколение, а может и раньше, наиболее важные зерновые культуры претерпят радикальные изменения в результате вмешательства генной инженерии и эти изменения серьезно повредят экосистеме в целом, а также подвергнут опасности все человечество. До тех пор пока не доказана безопасность продукции, полученной в результате генной инженерии, этот вопрос всегда будет оставаться под сомнением - и это та точка зрения, которую отстаивает Партия Природного Закона. Необходимо, чтобы применение генной инженерии сопровождалось строгим научным контролем безопасности. Почти с полной определенностью можно сказать, что генная инженерия приведет к химическому загрязнению окружающей среды. Выведение сортов зерновых с повышенной устойчивостью к гербицидов, приведет к тому, что фермеры будут вынуждены применять для борьбы с сорняками в трое больше химических средств защиты, чем ранее, а это в свою очередь увеличит загрязнение почвы и грунтовых вод Америки. Например, химическая компания "Монсанто" уже вывела сорта кукурузы, сои и сахарной свеклы, устойчивые к гербициду "Раундап", выпускаемому этой же компанией. Промышленные чиновники неоднократно заявляли, что "Раундап" безопасен для живых организмов и быстро нейтрализуется окружающей средой. Однако, предварительные исследования, проведенные в Дании, показали, что "Раундап" остается в почве в течение трех лет (и следовательно, может впитываться последующими сельскохозяйственными культурами, посаженными на этом месте) были проведены и другие научные работы, которые выявили, что применение данного гербицида вызывает токсические реакции у фермеров, нарушают функцию воспроизведения потомства у млекопитающих, наносит вред рыбам, дождивым червям и полезным насекомым. Сторонники генной инженерии часто заявляют, что эта технология является просто более усовершенствованным видом скрещивания, которое применялось тысячелетиями для улучшения породы культурных растений и домашних животных. Но на самом деле, вмешательство генной инженерии

Информация о работе Современная генная инженерия: успехи и проблемы