Синергетика - наука о процессах самоорганизации сложных систем

Автор работы: Пользователь скрыл имя, 26 Марта 2014 в 16:48, реферат

Краткое описание

При определенных условиях в открытых системах могут возникнуть процессы самоорганизации в результате получения новой энергии и вещества извне и диссипации, или рассеяния, использованной в системе энергии.
Таким образом, было установлено, что ключ к пониманию процессов самоорганизации содержится в исследовании процессов взаимодействия системы с окружающей средой.
К установлению общего взгляда на процессы самоорганизации разные ученые шли разными путями.
Целью данной работы является рассмотрение теоретических вопросов науки о процессах самоорганизации сложных систем.

Содержание

Введение…………………………………………………………….…..….....2

1. Формирование идей самоорганизации…………………………….…......3
2. Самоорганизация как основа эволюции……………………….………....7
3. Исследования особенностей эволюции в синергетике . ..…………...12
Заключение……………………………………………………………..…….18
Список использованной литературы…………………………

Прикрепленные файлы: 1 файл

SINERG2#.DOC

— 102.00 Кб (Скачать документ)

Новые структуры называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят.

Диссипативные структуры существуют лишь постольку, поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию. Из энергии возникает порядок с увеличением общей энтропии.

Таким образом, энтропия - не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации (как думали сторонники “тепловой смерти” Вселенной), а при определенных условиях становится прародительницей порядка.

С одними и теми же граничными условиями оказываются совместимыми множество различных диссипативных структур. Это - следствие нелинейного характера сильно неравновесных ситуаций. Малые различия могут привести к крупномасштабным последствиям.

Следовательно, граничные условия необходимы, но не достаточны для объяснения причин возникновения структуры.

Необходимо также учитывать реальные процессы, приводящие к “выбору” одной из возможных структур. Именно поэтому (а также в силу некоторых других причин) мы и приписываем таким системам определенную “автономию”, или “самоорганизации”. Исследования, о которых только что говорилось, проводятся в рамках науки, получившей название синергетики.

Классическая термодинамика ХIХ века изучала механическое действие теплоты, причем предметом ее исследований были закрытые системы, стремящиеся к состоянию равновесия. Термодинамика ХХ века изучает открытые системы в состояниях, далеких от равновесия. Это направление и получило название синергетики (от “синергия” - сотрудничество, совместное действие).

Синергетика сформулировала принцип самодвижения в неживой природе, создания более сложных систем из более простых. С синергетикой в физику проник эволюционный подход, и наука приходит к пониманию творения как создания нового.

Синергетика ввела случайность на макроскопический уровень, подтвердив тем самым выводы механики для микроскопического уровня.5

Синергетика подтвердила вывод теории относительности о взаимопревращении вещества и энергии и объясняет образование веществ. Она пытается ответить на вопрос, как образовались все те макросистемы, в которых мы живем. С точки зрения синергетики, энергия как бы застывает в виде кристаллов, превращаясь из кинетической в потенциальную. Вещество - это застывшая энергия.

Энергия - понятие, характеризующее способность производить работу, но энергия сейчас может пониматься не только в смысле механической работы, но и как созидатель новых структур. Энтропия - это форма выражения количества связанной энергии, которую имеет вещество. Энергия - творец, энтропия - мера творчества. Она характеризует результат.

Синергетика отвечает на вопрос, за счет чего происходит эволюция в природе. Везде, где создаются новые структуры, необходим приток энергии и обмен со средой (эволюция, как жизнь, требует метаболизма).

Если в эволюции небесных тел мы видим результат производства, то в синергетике изучается процесс творчества природы. Синергетика подтверждает вывод теории относительности: энергия творит более высокие уровни организации. Перефразируя Архимеда, можно сказать: “Дайте мне энергию, и я создам мир”.

Новая наука, которая сначала называлась термодинамикой открытых систем, а затем получила название синергетика, изменила представление о мире. Мы говорили о моделях Вселенной и могли понимать, что Вселенная появилась после того, как некое существо нажало на кнопку.

 Физика ХХ  века сначала изменила отношение  к тому, что считать материей  и как она соотносится с  пространством и временем, а в конце ХХ века по-новому взглянула на процесс развития. Развитие понимается в синергетике как процесс становления качественно нового, того, что еще не существовало в природе и предсказать которое невозможно.

На пороге ХХI века наука подошла к тому, чем всегда занималась мифология - к вопросу о происхождении мира и материи. Кибернетика решает проблему рождения разума, синергетика - проблему рождения материи.

 

4. Время - объект физического исследования

 

Каждый из нас имеет свои представления о времени. "Все у нас чужое, одно лишь время наше" - так считал римский философ и писатель Луций Анней Сенека.

Так что же такое время? Самый простой ответ таков: - это то, что показывают часы. Принцип работы часов может быть основан на многих физических явлениях и процессах. Наиболее удобны периодические процессы, длительно повторяющиеся с высокой степенью точности, например вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и т. п.

Для измерения времени могут быть использованы и непериодические процессы, происходящие по известному временному закону, например, радиоактивный распад атомов или свободное падение тел в поле тяготения. Многие крупные достижения в естествознании связаны с изображением  и конструированием более точных часов.

В более строгом определении время выражает порядок смены  физических состояний и является объективной характеристикой любого физического процесса или явления; оно универсально. Говорить о времени безотносительно к изменениям в каких-либо реальных телах или системах - с физической точки зрения бессмысленно.

Более глубокое осознание сущности научных понятий происходит в результате более четкой постановки, осмысления и решения проблем, связанных с этими понятиями, - в этом одна из характерных особенностей процесса познания.

Одна из таких проблем, касающаяся физики и философии, - абсолютный и относительный характер времени. Ньютон различал абсолютное и относительное время. В своих фундаментальных "Математических началах натуральной философии" он писал:

“Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное, кажущееся или обыденное время есть или точная, или изменчивая постигаемая чувствами внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц, год... Течение абсолютного времени изменяться не может. Длительность или продолжительность существования вещей одна и та же, быстры ли движения (по которым измеряется время), медленны ли, или их совсем нет... Время и пространство составляют как бы вместилища самих себя и всего существующего”.

Аналогичные соображения Ньютон высказывал и для пространства.

В процессе развития физики с появлением специальной теории относительности возникло утверждение: абсолютное время не имеет физического смысла, оно - лишь идеальное математическое представление, ибо в природе нет такого реального физического процесса, пригодного для измерения абсолютного времени.

Во-первых, течение времени зависит от скорости движения системы отсчета. При достаточно большой скорости, близкой к скорости света, время замедляется, т. е. возникает релятивистское замедление времени

. Во-вторых, поле тяготения приводит к гравитационному замедлению времени. Можно говорить только о локальном времени в некоторой системе отсчета.  В этой связи время не есть сущность, не зависящая от материи. Течет оно с различной скоростью в различных физических условиях. Время всегда относительно. Важная особенность времени выражена в постулате времени: одинаковые во всех отношениях явления происходят за одинаковое время.

В частности, длительности повторяющихся периодов хороших часов при неизменных условиях совершенно одинаковы. Хотя этот постулат кажется естественным и очевидным, его истинность относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных, но реальных часов, поскольку:

1) они все же не идеальны и характеризуются своей мерой точности;

2) нет абсолютной уверенности в возможности создания совершенно одинаковых условий в природе в разное время.

 Вместе с  тем длительная практика естественнонаучных  исследований позволяет нам не  сомневаться в справедливости  данного постулата в пределах  определенной точности, которая  может быть сколь угодно высокой. Механическая картина мира, построенная по данным физики на основе вышеизложенных принципов, дает стройное представление о мире, легко доступно каждому. Исторически она была первой научной картиной мира, и ее роль в развитии научных представлений о природе очень велика. Физика Ньютона давала синтетическую и всеобъемлющую картину мира для всех явлений, доступных эксперименту и наблюдениям того времени.6

Теория относительности, появившаяся на рубеже ХIХ и ХХ веков и внесшая решительно революционные изменения в представления о природе, и по сегодняшний день лежит в основе наших взглядов на природу. Так пространство и время - формы существования материи - были оторваны от материи и друг друга.

Но в конце ХIХ века были сделаны открытия, разрушившие механическую картину мира, ставившие под сомнение абсолютность классической физики. Классическая механика, по заявлению Эйнштейна, опиралась "на две ничем не оправданные гипотезы":

• промежуток времени между двумя событиями не зависит от состояния движения тела отсчета;

• пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета.

Исходя из этих, кажущихся вполне очевидными, гипотез классическая механика молчаливо признавала, что величины промежутка времени и расстояния имеют абсолютные значения, т. е. не зависят от состояния движения тела отсчета.  Выходило, что если человек в равномерно движущемся вагоне проходит, например, расстояние в 1 метр за одну секунду, то этот же путь по отношению к полотну дороги он пройдет тоже за одну секунду.

Аналогично этому считалось, что пространственные размеры тел в покоящихся и движущихся системах отсчета остаются одинаковыми.  И хотя эти предположения с точки зрения обыденного сознания и так называемого здравого смысла кажутся само собой очевидными, тем не менее они не согласуются с результатами тщательно проведенных экспериментов, подтверждающих выводы новой, специальной теории относительности. В ходе разработки своей теории Эйнштейну пришлось пересмотреть прежние представления классической механики о пространстве и времени. Прежде всего, он отказался от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.7

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат.

 Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени. Отсюда становится также ясным, что для Эйнштейна основные физические понятия, такие, как пространство и время, приобретают ясный смысл только после указания тех экспериментальных процедур, с помощью которых можно их проверить.

"Понятие, - пишет он, - существует для физики постольку, поскольку есть возможность в конкретном случае найти, верно оно или нет". Тот факт, что расстояние и время в теории относительности определяются наблюдателем по отношению к определенной системе отсчета, отнюдь не свидетельствует о том, что эти понятия имеют произвольный характер, устанавливаемый субъектом.  Субъект лишь фиксирует и точно определяет объективное отношение, существующее между процессами, совершающимися в разных системах отсчета. Таким образом, вместо абстрактных рассуждений об абсолютном движении в теории относительности рассматривают конкретные движения тел по отношению к конкретным системам отсчета, связанным с конкретными телами.

Другой важный результат теории относительности:

Связь обособленных в классической механике понятий пространства и времени в единое понятие пространственно-временной непрерывности, или континуума. Как мы уже знаем, положение тела в пространстве определяется тремя его координатами х, у, z, но для описания его движения необходимо ввести еще четвертую координату - время t.

Таким образом, вместо разобщенных координат пространства и времени теория относительности рассматривает взаимосвязанный мир физических событий, который часто называют четырехмерным миром Германа Минковского (1864-1909), немецкого математика и физика, впервые предложившего такую трактовку. В этом мире положение каждого события определяется четырьмя числами: тремя пространственными координатами движущегося тела х, у, г и четвертой координатой - временем t.

Главная заслуга Минковского, по мнению Эйнштейна, состоит в том, что он впервые указал на формальное сходство пространственно-временной непрерывности специальной теории относительности с непрерывностью геометрического пространства Евклида.  Чтобы яснее представить это сходство, необходимо вместо обычной координаты времени ввести пропорциональную ей мнимую величину ict, где i обозначает мнимую единицу Ö - 1. Новые понятия и принципы теории относительности существенно изменили не только физические, но и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

 Особенно  резкое сопротивление они встретили  со стороны так называемого здравого смысла, который в конечном итоге также ориентируется на доминирующие в обществе научные взгляды, почерпнутые из классической науки.  Действительно всякий, кто впервые знакомится с теорией относительности, нелегко соглашается с ее выводами. Опираясь на повседневный опыт, трудно представить, что длина линейки или твердого тела в движущейся инерциальной системе сокращается в направлении их движения, а временной интервал увеличивается.

В связи с этим представляет интерес парадокс близнецов, который нередко приводят для иллюстрации теории относительности. Пусть один из близнецов отправляется в космическое путешествие, а другой - остается на Земле. Поскольку в равномерно движущемся с огромной скоростью космическом корабле темп времени замедляется и все процессы происходят медленнее, чем на Земле, то космонавт, вернувшись на нее, окажется моложе своего брата.

 Такой результат  кажется парадоксальным с точки зрения привычных представлений, но вполне объяснимым с позиций теории относительности. В его пользу говорят наблюдения над элементарными частицами, названными мю-мезонами, или мюонами. Средняя продолжительность существования таких частиц около 2 мкс, но тем не менее некоторые из них, образующиеся на высоте 10 км, долетают до поверхности земли. Как объяснить этот факт? Ведь при средней “жизни” в 2 мкс эти частицы могут проделать путь только 600 м.

Информация о работе Синергетика - наука о процессах самоорганизации сложных систем