Планета Нептун

Автор работы: Пользователь скрыл имя, 13 Января 2014 в 19:08, реферат

Краткое описание

Обнаруженный 23 сентября 1846 года, Нептун стал первой планетой, обнаруженной в соответствии с математическими расчётами, а не путём регулярных наблюдений. Обнаружение непредвиденных изменений в орбите Урана породило гипотезу о неизвестной планете, гравитационным возмущающим влиянием которой они и обусловлены . Нептун был найден в пределах предсказанного положения. Вскоре был обнаружен и его спутник Тритон, однако остальные 12 спутников, известных ныне, не были обнаружены до XX века. Нептун был посещён лишь одним космическим аппаратом, «Вояджером-2», который пролетел вблизи от планеты 25 августа 1989 года.

Прикрепленные файлы: 1 файл

реферат нептун.doc

— 109.50 Кб (Скачать документ)

 

 

Кольца

 

 

У Нептуна есть кольцевая система, хотя гораздо менее существенная, чем, к примеру, у Сатурна. Кольца могут состоять из ледяных частиц, покрытых силикатами, или основанным на углероде материалом, которые наиболее вероятно придаёт им красноватый оттенок[56]. В систему колец Нептуна входит 5 компонентов. Относительно узкое, самое внешнее, расположенное в 63 тысячах километров от центра планеты — кольцо Адамса; кольцо Леверье на удалении в 53000 километров от центра и более широкое; более слабое кольцо Галле на расстоянии в 42000 километров. Кольцо Араго расположено на расстоянии в 57000 километров. От внешних границ кольца Леверье до внутренних границ кольца Араго располагается широкое кольцо Лассел. Первое кольцо Нептуна было

 

обнаружено в 1968 году командой астрономов во главе с Эдвардом Гайненом . Но позже считалось, что это кольцо могло быть неполным, дефектным.

 

 Такое мнение возобладало  после наблюдения за покрытием  колец звездой в 1984 году, когда  кольца затмили звезду во время  её входа в тень, а не по выходу из неё. Изображения «Вояджера-2» от 1989 года уладили эту проблему, поскольку было обнаружено ещё несколько слабых колец, но с достаточно массивной структурой. Причина этого так и не выяснена до сих пор, но это могло произойти из-за гравитационного взаимодействия с маленькими спутниками на орбите поблизости от колец. Наиболее удалённое кольцо Адамс, как теперь известно, содержит 5 «дужек» под названием: «Храбрость», «Liberté», «Egalité 1», «Egalité 2», и «Fraternité» (Свобода, равенство и братство). Существование этих дуг было трудно объяснить, потому что законы механики предсказывают, что дуги должны были бы за достаточно короткий момент времени соединиться в однородное кольцо. Считалось, что в таком положении дуги удерживает гравитационный эффект спутника Нептуна — Галатеи, которая обращается вокруг Нептуна вблизи от внутренней границы кольца Адамса. Однако новые исследования показывают, что влияние гравитации Галатеи недостаточно для того, чтобы удерживать материал колец в том положении, в котором он находится сейчас. Наблюдаемые результаты можно объяснить присутствием ещё одного спутника Нептуна, который может иметь достаточно малый размер (до 6 км), и вследствие этого может быть ещё не открыт. Наблюдения с поверхности Земли, опубликованные в 2005 году, показали, что кольца Нептуна намного более непостоянны, чем ранее мыслилось. Изображения, полученные обсерваторией Кек (Гавайские острова) в 2002 и 2003 году показывают значительные перемены по сравнению с изображениями «Вояджера-2». В частности, кажется что дуга «Liberté» может исчезнуть всего через столетие.

 

 

Климат

 

Одно из различий между Нептуном и Ураном — уровень метеорологической  активности. «Вояджер-2», пролетавший  вблизи Урана в 1986 году, зафиксировал крайне слабую активность атмосферы. В  противоположность Урану, Нептун демонстрировал заметные погодные перемены во время съёмки с «Вояджер-2» в 1989 году.

 

 

Погода на Нептуне характеризуется  чрезвычайно динамической системой штормов, с ветрами, достигающими порой  сверхзвуковых скоростей (около 600 м/с)[70]. В ходе отслеживания движения постоянных облаков было зафиксировано изменение скорости ветра от 20 м/с в восточном направлении к 325 м/с на западном. В верхнем облачном слое скорости ветров разнятся от 400 м/с вдоль экватора до 250 м/с на полюсах. Большинство ветров на Нептуне дуют в направлении, обратном вращению планеты вокруг своей оси. Общая схема ветров показывает, что на высоких широтах направление ветров совпадает с направлением вращения планеты, а на низких широтах противоположно ему. Различия в направлении воздушных потоков, как полагают, следствие «скин-эффекта», а не каких-либо глубинных атмосферных процессов. Содержание в атмосфере метана, этана и ацетилена в области экватора превышает в десятки и сотни раз содержание этих веществ в области полюсов. Это наблюдение может считаться свидетельством в пользу существования апвеллинга на экваторе Нептуна и его понижения ближе к полюсам. В 2007 году было замечено, что верхняя тропосфера южного полюса Нептуна была на 10 C° теплее, чем остальная часть Нептуна, где температура в среднем составляет −200 C°.

 

Такая разница в температуре достаточна, чтобы метан, который в других областях верхней части атмосферы Нептуна находится в замороженном виде, просачивался в

 

космос на южном полюсе. Эта «горячая точка» — следствие осевого наклона  Нептуна, южный полюс которого уже четверть Нептунианского года, то есть примерно 40 земных лет, обращён к Солнцу. По мере того, как Нептун будет медленно продвигаться по орбите к противоположной стороне Солнца, южный полюс постепенно уйдёт в тень, и Нептун подставит Солнцу северный полюс. Таким образом, высвобождение метана в космос переместится с южного полюса на северный. Из сезонных изменений облачные полосы в южном полушарии Нептуна, как наблюдалось, увеличились в размере и альбедо. Эта тенденция была замечена ещё в 1980 году, и, как ожидается, продлится до 2020 с наступлением на Нептуне нового сезона. Сезоны меняются каждые 40 лет.

 

 

Штормы

 

 

В 1989 году, Большое тёмное пятно, устойчивый шторм-антициклон размерами 13,000 × 6,600 км, был открыт аппаратом НАСА «Вояджер-2». Этот атмосферный шторм напоминал Большое красное пятно Юпитера, однако 2 ноября 1994 года космический телескоп «Хаббл» не обнаружил его на прежнем месте. Вместо него новое похожее образование было обнаружено в северном полушарии планеты. Скутер — это другой шторм, обнаруженный южнее Большого тёмного пятна. Его название — следствие того, что ещё за несколько месяцев до сближения «Вояджера-2» с Нептуном было ясно, что эта группка облаков перемещалась гораздо быстрее Большого тёмного пятна. Последующие изображения позволили обнаружить ещё более быстрые, чем «скутер», группы облаков. Малое тёмное пятно, второй по интенсивности шторм, наблюдавшийся во время сближения «Вояджера-2» с планетой в 1989 году, расположено ещё южнее. Первоначально оно казалось полностью тёмным, но при сближении яркий центр Малого тёмного пятна стал виднее, что можно заметить на большинстве чётких фотографий с высоким разрешением. «Тёмные пятна» Нептуна, как полагают, рождаются в тропосфере на более низких высотах, чем более яркие и заметные облака. Таким образом, они кажутся своеобразными дырами в верхнем облачном слое. Поскольку эти штормы носят устойчивый характер и могут существовать в течение нескольких месяцев, они, как считается, имеют вихревую структуру. Часто связываются с тёмными пятнами более яркие, постоянные облака метана, которые формируются в тропопаузе. Постоянство сопутствующих облаков показывает, что некоторые прежние «тёмные пятна» могут продолжить своё существование как циклон, даже при том что они теряют тёмный окрас. Тёмные пятна могут рассеяться, если они движутся слишком близко к экватору или через некий иной неизвестный пока механизм.

 

 

Внутреннее тепло

 

Более разнообразная погода на Нептуне, по сравнению с Ураном, как полагают, — следствие более высокой внутренней температуры. При этом Нептун в два раза удалённее от Солнца чем Уран, и получает лишь 40 % от солнечного света, который получает Уран. Поверхностные же температуры этих двух планет примерно равны. Верхние области тропосферы Нептуна достигают весьма низкой температуры в −221,4 °C. На глубине, где давление равняется 1 бару, температура достигает -201,15 °C. Глубже идут газы, однако температура устойчиво повышается. Как и с Ураном, механизм нагрева неизвестен, но

 

несоответствие большое: Уран излучает в 1,1 больше энергии чем получает от Солнца. Нептун же излучает в 2,61 раза больше чем получает, его внутренний источник тепла

 

производит 161 % от получаемого от Солнца. Несмотря на то, что Нептун — самая далёкая планета от Солнца, его внутренней энергии достаточно для наличия самых быстрых ветров в Солнечной системе. Предлагается несколько возможных объяснений, включая радиогенный нагрев ядром планеты (как Земля греется калием-40, к примеру), диссоциация метана в другие цепные углеводороды в условиях атмосферы Нептуна, а также конвекция в нижней части атмосферы, которая приводит к торможению волн гравитации над тропопаузой.

 

 

Орбита и вращение

 

Среднее расстояние между Нептуном и Солнцем — 4,55 млрд. км. (около 30,1 средних расстояний между Солнцем  и Землёй, или 30,1 а. е.), и полный оборот вокруг Солнца у него занимает 164,79 лет. 12 июля 2011 года Нептун завершит свой первый с момента открытия планеты в 1846 году полный оборот. С Земли он будет виден иначе, чем в день открытия, в результате того, что период обращения Земли вокруг Солнца (365,25 дней) не является кратным периоду обращения Нептуна. Эллиптическая орбита планеты наклонена на 1,77° относительно орбиты Земли. Вследствие наличия эксцентриситета 0,011, расстояние между Нептуном и Солнцем изменяется на 101 миллион километров - разница между перигелием и афелием, т.е. ближайшей и самой отдалённой точками положения планеты вдоль орбитального пути. Осевой наклон Нептуна — 28,32°, что похоже на наклон оси Земли и Марса. В результате этого планета испытывает схожие сезонные изменения. Однако, из-за длинного орбитального периода Нептуна сезоны длятся в течение сорока лет каждый.

 

Сидерический период вращения для Нептуна равен 16,11 часов. Вследствие осевого наклона, сходного с Земным (23°), изменения в сидерическом периоде вращения в течение его длинного года не является значимыми. Поскольку Нептун не имеет твёрдой поверхности, его атмосфера подвержена дифференциальному вращению. Широкая экваториальная зона вращается с периодом приблизительно 18 часов, что медленнее, чем 16,1-часовое вращение магнитного поля планеты. В противоположность экватору, полярные области вращаются за 12 часов. Среди всех планет Солнечной системы такой вид вращения наиболее ярко выражен именно у Нептуна. Это приводит к сильному широтному сдвигу ветров.

 

Орбитальные резонансы

Основная статья: Пояс Койпера

 

Диаграмма показывает орбитальные  резонансы, вызванные Нептуном в  поясе Койпера: 2:3 резонанс (Плутино), «классический пояс», с орбитами, на которые Нептун существенного  влияния не оказывает, и 1:2 резонанс (Тутино).

 

Нептун оказывает большое влияние  на весьма отдалённый от него пояс Койпера. Пояс Койпера — кольцо из маленьких  ледяных мирков, подобное поясу астероидов между Марсом и Юпитером, но намного  протяжённее. Он располагается в  пределах от орбиты Нептуна(30 а. е.) до 55 астрономических единиц от Солнца. Гравитационная сила притяжения Нептуна оказывает наиболее существенное влияние на облако Койпера(в том числе в плане формирования его структуры), сравнимое по доле с влиянием силы

 

притяжения Юпитера на пояс астероидов. За время существования Солнечной системы некоторые области пояса Койпера были дестабилизированы гравитацией Нептуна, и в

 

структуре пояса образовались промежутки. В качестве примера можно привести область между 40 и 42 а. е..

 

Орбиты объектов, которые могут удерживаться в этом поясе в течение достаточно долгого времени определяются т.н. вековыми резонансами с Нептуном. Для некоторых орбит это время сравнимо с временем всего существования Солнечной системы. Эти резонансы появляются, когда период обращения объекта вокруг Солнца соотносится с периодом обращения Нептуна как небольшие натуральные числа, например, 1:2 или 3:4. Таким образом объекты взаимостабилизируют свои орбиты. Если, к примеру, объект будет совершать оборот вокруг Солнца в два раза медленнее Нептуна, то он пройдёт ровно половину пути, тогда как Нептун вернётся в своё начальное положение.

 

Наиболее плотно населённая часть  пояса Койпера, включающая в себя более 200 известных объектов, находится в резонансе 2:3 с Нептуном. Эти объекты совершают один оборот каждые 1½ оборота Нептуна и известны как «плутино», потому что среди них находится один из крупнейших объектов пояса Койпера — Плутон. Хотя орбиты Нептуна и Плутона пересекается, резонанс 2:3 не позволит им столкнуться. В других, менее «населённых», областях существуют резонансы 3:4, 3:5, 4:7 и 2:5. В своих точках Лагранжа (L4 and L5), зонах гравитационной стабильности, Нептун удерживает множество астероидов-троянцев, как бы таща их за собой по орбите. Троянцы Нептуна находятся с ним в резонансе 1:1. Троянцы очень устойчивы на своих орбитах и поэтому гипотеза их захвата гравитационным полем Нептуна маловероятна. Скорее всего, они сформировались вместе с ним.

 

 

Образование и миграция

Основная статья: Происхождение  Солнечной системы

 

Симуляция внешних планет и пояса  Койпера: а) До того как Юпитер и Сатурн вступили в резонанс 2:1; б) Рассеяние  объектов пояса Койпера в Солнечной  системе после изменения орбиты Нептуна; c) После выбрасывания тел  пояса Койпера Юпитером.

 

Для формирования ледяных гигантов — Нептуна и Урана — оказалось трудно создать точную модель. Современные модели полагают, что плотность материи во внешних регионах Солнечной системы была слишком низкой для формирования таких крупных тел традиционно принятым методом аккреции материи на ядро. Чтобы объяснить эволюцию Урана и Нептуна, было выдвинуто множество гипотез.

 

Одна из них считает, что оба  ледяных гиганта не сформировались методом аккреции, а появились  из-за нестабильностей внутри изначального протопланетного диска, и позднее их атмосферы были «сдуты» излучением массивной звезды класса O или B.

 

Другая концепция заключается  в том, что Уран и Нептун сформировались близко к Солнцу, где плотность  материи была выше, и впоследствии переместились на текущие орбиты. Гипотеза перемещения Нептуна пользуется популярностью, потому что позволяет объяснить текущие резонансы в поясе Койпера, в особенности, резонанс 2:5. Когда Нептун двигался наружу, он сталкивался с объектами прото-пояса Койпера, создавая новые резонансы и хаотично меняя существующие орбиты. Считается, что

 

объекты рассеянного диска оказались  в текущем положении из-за взаимодействия с резонансами, создаваемыми миграцией Нептуна.

 

 

 

 

Предложенная в 2004 году компьютерная модель Алессандро Морбиделли из обсерватории Лазурного берега в Ницце предположила, что перемещение Нептуна к поясу Койпера могло быть инициировано формированием резонанса 1:2 в орбитах Юпитера и Сатурна, который послужил, своего рода, гравитационным усилием, которое толкнуло Уран и Нептун на более высокие орбиты и заставило их поменять местоположение. Выталкивание объектов из пояса Койпера в результате этой миграции может также объяснить «Позднюю тяжёлую бомбардировку», произошедшую через 600 миллионов лет после формирования Солнечной системы, и появление у Юпитера троянских астероидов.

 

Спутники

Основная статья: Спутники Нептуна

 

Нептун (вверху) и Тритон (ниже).

Даты открытий, см. История открытия планет и спутников Солнечной  системы

 

У Нептуна на данный момент известно 13 спутников. Крупнейший из них весит более, чем 99,5 процентов от масс всех спутников Нептуна, вместе взятых, и лишь он массивен настолько, чтобы стать сфероидальным. Это Тритон, открытый Уильямом Ласселом всего через 17 дней после открытия Нептуна. В отличие от всех остальных крупных спутников планет в Солнечной системе, Тритон обладает ретроградной орбитой. Возможно, он был захвачен гравитацией Нептуна, а не сформировался на месте, и, возможно, когда-то был карликовой планетой в поясе Койпера . Он достаточно близок к Нептуну, чтобы быть зафиксированным в синхронном вращении. Из-за приливного ускорения Тритон медленно двигается по спирали к Нептуну, и, в конечном счёте, будет разрушен при достижении предела Роша, в результате чего образуется кольцо, которое может быть более мощным, чем кольца Сатурна (это произойдёт через относительно небольшой в астрономических масштабах период времени: от 10 до 100 миллионов лет). В 1989 году Тритон считался самым холодным объектом в Солнечной системе, температура которого была измерена, с предполагаемой температурой в −235 °C (38 K). Тритон является одним из трёх спутников планет Солнечной системы, имеющих атмосферу (наряду с Ио и Титаном). Указывается на возможность существования под ледяной корой Тритона жидкого океана, подобного океану Европы.

Информация о работе Планета Нептун