Космология, геология, биология

Автор работы: Пользователь скрыл имя, 30 Декабря 2010 в 00:33, контрольная работа

Краткое описание

Чёрная дыра́ — область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света.

Содержание

1. КОСМОЛОГИЯ «ЧЕРНЫЕ ДЫРЫ»
2. ГЕОЛОГИЯ «ЛИТОСФЕРА»
3. БИОЛОГИЯ «ЖИВАЯ КЛЕТКА»

Прикрепленные файлы: 1 файл

ксе.doc

— 104.00 Кб (Скачать документ)

      СОДЕРЖАНИЕ: 

  1. КОСМОЛОГИЯ  «ЧЕРНЫЕ ДЫРЫ»
  2. ГЕОЛОГИЯ «ЛИТОСФЕРА»
  3. БИОЛОГИЯ «ЖИВАЯ КЛЕТКА»
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    1. ЧЕРНАЯ ДЫРА

    Чёрная  дыра́ — область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света.

    Граница этой области называется горизонтом событий, а её характерный размер — гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда:

     ,

    где c — скорость света, M — масса тела, G — гравитационная постоянная.

    Теоретически  возможность существования таких  областей пространства-времени следует из некоторых точных решений уравнений Эйнштейна, первое из которых было получено Карлом Шварцшильдом в 1915 году. Точный изобретатель термина неизвестен, но само обозначение было популяризовано Джоном Арчибальдом Уилером и впервые публично употреблено в популярной лекции «Наша Вселенная: известное и неизвестное (Our Universe: the Known and Unknown)» 29 декабря 1967 года. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars).

    Вопрос  о реальном существовании чёрных дыр тесно связан с тем, насколько  верна теория гравитации, из которой  их существование следует. В современной  физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр, но их существование возможно и в рамках других (не всех) моделей.  Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре — например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса.

    В истории представлений о чёрных дырах выделяют три периода:

    Начало  первого периода связано с  опубликованной в 1784 году работой Джона Мичелла, в которой был изложен расчёт массы для недоступного наблюдению объекта.

    Второй  период связан с развитием общей теории относительности, стационарное решение уравнений которой было получено Карлом Шварцшильдом в 1915 году.

    Публикация  в 1975 году работы Стивена Хокинга, в которой он предложил идею об излучении чёрных дыр, начинает третий период. Граница между вторым и третьим периодами довольно условна, поскольку не сразу стали ясны все следствия открытия Хокинга, изучение которых продолжается до сих пор.

    Две важнейшие черты, присущие чёрным дырам  в модели Шварцшильда — это  наличие горизонта событий (он по определению есть у любой чёрной дыры) и сингулярности, которая отделена этим горизонтом от остальной Вселенной.

    Представления о чёрной дыре как об абсолютно  поглощающем объекте были скорректированы С. Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы.

    Скорость  испарения чёрной дыры тем больше, чем меньше её размеры. За счёт испарения  все чёрные дыры теряют массу и  время их жизни оказывается конечным.

    По  современным представлениям, есть четыре сценария образования чёрной дыры:

    Гравитационный коллапс (катастрофическое сжатие) достаточно массивной звезды (более чем 3,6 масс Солнца) на конечном этапе её эволюции.

    Коллапс центральной части галактики или пра-галактического газа.

    Формирование  чёрных дыр в момент Большого Взрыва в результате флуктуаций гравитационного поля и/или материи.

    Возникновение чёрных дыр в ядерных реакциях высоких энергий — квантовые  чёрные дыры.

    Чёрные  дыры звёздных масс образуются как  конечный этап жизни звезды, после  полного выгорания термоядерного  топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

  1. Погасшая очень плотная звезда.
  2. Белый карлик.
  3. Нейтронная звезда.
  4. Чёрная дыра.

    По  мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2—3 раза).

    Условия (главным образом, масса), при которых  конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что одни из крупнейших космических катастроф, вспышки сверхновых, возникают именно на этих этапах эволюции звёзд. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал — несколько десятков километров.

    Впоследствии  чёрная дыра может разрастись за счёт поглощения вещества — как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра).

    Столкновение  чёрных дыр с другими звёздами, а также столкновение нейтронных звёзд, вызывающее образование чёрной дыры, приводит к мощнейшему гравитационному излучению.

    Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактикиСтрелец A*.

    В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

    Первичные чёрные дыры в настоящее время  носят статус гипотезы. Если в начальные  моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой.

    Предполагается, что в результате ядерных реакций  могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые  чёрные дыры.

    Даже  если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным. 

    2. Литосфера

    Современный рельеф — совокупность неровностей  земной поверхности разного масштаба. Их называют формами рельефа. Рельеф сформировался в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) геологических процессов.

    Формы рельефа различны по размерам, строению, происхождению, истории развития и т. д. Различают выпуклые (положительные) формы рельефа (горный хребет, возвышенность, холм и др.) и вогнутые (отрицательные) формы (межгорная котловина, низменность, овраги и др.).

    Крупнейшие  формы рельефа — материки и  океанические впадины и крупные формы — горы и равнины образовались прежде всего за счет деятельности внутренних сил Земли. Средние по размерам и мелкие формы рельефа — речные долины, холмы, овраги, барханы и другие, наложенные на более крупные формы, созданы различными внешними силами.

    В основе геологических процессов  лежат разные источники энергии. Источником внутренних процессов является тепло, образующееся при радиоактивном распаде и гравитационной дифференциации веществ внутри Земли. Источник энергии внешних процессов — солнечная радиация, превращающаяся на Земле в энергию воды, льда, ветра и т. д.

    Мегарельеф - крупные формы рельефа, части  планетарных форм: материковые выступы, впадины океанов, горные страны, великие равнины, срединно-океанические хребты, островные дуги и др.

    С внутренними процессами связаны  различные тектонические движения земной коры, создающие основные формы  рельефа Земли, магматизм, землетрясения. Тектонические движения проявляются в медленных вертикальных колебаниях земной коры, в образовании складок горных пород и разломов.

    Медленные вертикальные колебательные движения — поднятия и опускания земной коры — совершаются непрерывно и повсеместно, сменяясь во времени и пространстве на протяжении всей геологической истории. Они свойственны платформам. С ними связано наступление моря и соответственно изменение очертаний материков и океанов.

    Под складчатыми тектоническими нарушениями пластов горных пород подразумеваются изгибы слоев без нарушения их сплошности. Складки различаются  по  размерам,  причем мелкие нередко осложняют крупные, по форме, по происхождению и т. д.

    Складчатые  и разрывные деформации (нарушения) пластов земной коры на фоне общего тектонического поднятия территории приводят к образованию гор. Поэтому складчатые и разрывные движения объединяют под общим названием орогенических (от греч. ого — гора, genos — рождение), т.е. движений, создающих горы.

    При горообразовании темпы поднятия всегда интенсивнее процессов разрушения и сноса материала.

    Складчатые  и разрывные тектонические движения сопровождаются, особенно в горах, магматизмом, метаморфизмом горных пород и землетрясениями.

    С эндогенными процессами связаны  также землетрясения — 
внезапные подземные удары, сотрясения и смещения пластов и 
блоков земной коры.
Очаги землетрясений приурочены к зонам 
разломов.

    На  рельеф земной поверхности помимо внутренних процессов одновременно воздействуют и различные внешние силы. Деятельность любого внешнего фактора складывается из процессов разрушения и сноса пород (денудация) и отложения материала в понижениях (аккумуляция). Этому предшествует выветривание — процесс разрушения горных пород под влиянием резкого колебания температур и замерзания воды в трещинах породы, а также химического изменения их состава под влиянием воздуха и воды, содержащей кислоты, щелочи и соли. В выветривании принимают участие и живые организмы. Выделяют два основных вида выветривания: физическое и химическое. В результате выветривания горных пород образуются рыхлые отложения, удобные для перемещения водой, льдом, ветром и т. д.

Информация о работе Космология, геология, биология