Контрольная работа по "Концепции современного естествознания»

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 12:14, контрольная работа

Краткое описание

Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научных определений. До появления идеи симметрии математика, физика, естествознание в целом напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира. В качестве одной из основных тенденций этого процесса выступает математизация научного знания.

Содержание

Вопрос №47. Понятие симметрии и асимметрии. Инвариантность. Взаимосвязь симметрии с законом. Формы симметрии (геометрическая и динамическая форма). Калибровочная симметрия.

Вопрос №109. Теория Мегамира – общая теория относительности Ф. Эйнштейна (ОТО) – теоретическая основа современной космологии. Введите понятие «неинерциальные системы отсчета» общий принцип относительности. Принцип эквивалентности. В чем причина тяготения? Искривление пространства-времени в гравитационном поле. Геодезическая линия. Каково соотношение классической механики и ОТО? Что означает гравитация (по Ньютону) и гравитация (по Эйнштейну)? Эмпирические доказательства ОТО.

Вопрос №176. Понятие «экологическая катастрофа». Примеры прогнозируемых и реально существующих катастроф. Катастрофа на Арале, её су3щность и основные причины.

Прикрепленные файлы: 1 файл

КСЕ.docx

— 56.59 Кб (Скачать документ)

   Специальная  теория относительности объединила  пространство и время в единый  континуум пространство-время. Основанием  для этого послужили постулат  о предельной скорости передачи  взаимодействий материальных тел  – скорости света равной в  вакууме приблизительно 300000 км/с., и  принцип относительности. Из данной  теории следует относительность  одновременности двух событий,  происшедших в разных точках  пространства, а так же относительность  измерений длин и интервалов  времени, произведенных в разных  системах отсчета, движущихся  относительно друг друга. Все  это означает,  что для реального мира пространство имеют не абсолютный, а относительный характер.

Все весомые тела взаимно испытывают тяготение, эта сила обуславливает  движение планет вокруг солнца и спутников  вокруг планет. Теория гравитации –  теория созданная Ньютоном, стояла у колыбели современной науки. Другая теория гравитации, разработанная Эйнштейном , является величайшим достижением теоретической физики 20 века. В течении столетий развития человечества люди наблюдали явление взаимного притяжения тел и измеряли его величину; они пытались поставить это явление себе на службу, превзойти его влияние, и наконец, уже в самое последнее время рассчитывать его с чрезвычайной точностью во время первых шагов вглубь Вселенной. Необозримая сложность окружающих нас тел обусловлена прежде всего такой многоступенчатой структурой, конечные элементы которой – элементарные частицы – обладают сравнительно небольшим числом видов взаимодействия. Но эти виды взаимодействия резко отличаются по своей силе. Частицы, образующие атомные ядра, связаны между собой самыми могучими из всех известных нам сил; для того чтобы отделить эти частицы друг от друга, необходимо затратить колоссальное количество энергии. Электроны в атоме связаны с ядром электромагнитными силами; достаточно сообщить им весьма скромную энергию ,(как правило достаточно энергии химической реакции) как электроны уже отделяются от ядра. Если говорить об элементарных частицах и атомах, то для них самым слабым взаимодействием является гравитационное взаимодействие. При сопоставлении с взаимодействием элементарных частиц гравитационные силы настолько слабы, что это трудно себе представить. Тем не менее они и только они полностью регулируют движение небесных тел. Это происходит потому, что тяготение сочетает в себе две особенности, из-за которых его действие усиливается, когда мы переходим к крупным телам. В отличии от атомного взаимодействия, силы гравитационного притяжения ощутимы и на больших удаленьях от созидающих их тел. Кроме того гравитационные силы – это всегда силы притяжения, то есть тела всегда притягиваются друг к другу.

Развитие  теории гравитации произошло в самом  начале `становления современной  науки на примере взаимодействия небесных тел. Задачу облегчило то, что небесные тела движутся в вакууме мирового пространства без побочного влияния других сил. Блестящие астрономы – Галилей и Кеплер – подготовили своими трудами почву для дальнейших открытий в этой области. В дальнейшем великий Ньютон сумел придумать целостную теорию и придать ей математическую форму. Среди всех сил, которые существуют в природе, сила тяготения отличается прежде всего тем, что проявляется повсюду. Все тела обладают массой, которая определяется как отношение силы, приложенной к телу, к ускорению, которое приобретает под действием этой силы тело. Сила притяжения, действующая между любыми двумя телами, зависит от масс обоих тел; она пропорциональна произведению масс рассматриваемых тел. Кроме того, сила тяготения характеризуется тем, что она подчиняется закону обратной пропорциональности квадрату расстояния. Другие силы могут зависеть от расстояния совсем иначе; известно немало таких сил.

Когда Эйнштейн и другие физики убедились в том, что специальная теория относительности пришла на смену ньютоновской физике, они занялись снова фундаментальными свойствами частиц и силовых полей. Наиболее важным объектом, требующим пересмотра, была гравитация.

Но  почему бы несоответствие между относительностью времени и законом тяготения  Ньютона не разрешить столь же просто, как в электродинамике? Следовало  бы ввести представление о гравитационном поле, которое распространялось бы примерно так же, как электрическое и магнитное поля, и которое оказалось бы посредником при гравитационном взаимодействии тел, в согласии с представлениями теории относительности. Это гравитационное взаимодействие сводилось бы к ньютоновскому закону тяготения, когда относительные скорости рассматриваемых тел были бы малы по сравнению со скоростью света. Эйнштейн попытался построить релятивистскую теорию тяготения на этой основе, но одно обстоятельство не позволило ему осуществить это намерение: никто ничего не знал о распространении гравитационного взаимодействия с большой скоростью, имелась лишь некоторая информация относительно эффектов, связанных с большими скоростями движения источников гравитационного поля – масс.

В качестве следующего исходного принципа Эйнштейн постулировал, что законы гравитационного  поля должны получаться на основе математической процедуры, аналогичной процедуре, приводящей к законам электромагнитной теории; законы гравитационного поля, получаемые таким способом, очевидно, должны быть сходны по форме с законами электромагнетизма. Но даже принимая во внимание все эти соображения, Эйнштейн обнаружил, что он может построить несколько различных теорий, которые в равной степени удовлетворяют всем требованиям. Нужна была иная точка зрения, чтобы однозначно прийти к релятивистской тории тяготения. Эйнштейн нашел такую новую точку зрения в принципе эквивалентности, согласно которому ускорение, приобретаемое телом в поле сил тяготения, не зависит от характеристик этого тела.

В релятивистской теории гравитации роль источников отводится  комбинациям массы и импульса (импульс выступает связующим  звеном между состоянием одного и  того же объекта в разных четырехмерных  или, лоренцевых, системах отсчета). Релятивистская теория связывает тензор кривизны с тензором, описывающим поведение источников тяготения. Эти тензоры пропорциональны друг другу. Коэффициент пропорциональности определяется из требования: закон тяготения в тензорной форме должен сводиться к ньютоновскому закону тяготения для слабых гравитационных полей и при малых скоростях тел; этот коэффициент пропорциональности с точностью до мировых констант равен постоянной тяготения Ньютона. Этим шагом Эйнштейн завершил построение теории тяготения, называемой иначе общей теорией относительности.  

К числу эмпирических доказательств  ОТО относятся экспериментальная  проверка равенства инертной и гравитационных масс.

Важнейшим эмпирическим доказательством  ОТО является отклонение луча света в поле Солнца. Из эксперимента было получено, что электромагнитное поле взаимодействует с гравитационным полем. Мы точно знаем, когда звезда должна скрываться за Солнцем. Мы измеряем время, когда мы перестаем видеть эту звезду (эти эксперименты проводятся во время полных солнечных затмений), и извлекаем угол отклонения луча света от прямой.

Смещение перигелия планет. Известно, что планеты двигаются вокруг Солнца по замкнутой эллиптической орбите (если не учитывать влияние других тел -- например, Юпитер сильно влияет на своих соседей). Из-за того, что Солнце массивный объект, пространство искривлено, а так как планеты двигаются по эллипсам (то приближаются, то удаляются), то зависимость потенциальной энергии от радиуса нарушается (она переходит в зависимость) и орбита планеты перестает быть замкнутой. ОТО предсказывает величину смещения перигелия орбиты.  Самым удобным объектом для наблюдения является Меркурий, т.к. он ближе всего к Солнцу. Анализ результатов наблюдений Меркурия показал, что за 100 лет смещение перигелия Меркурия составило, а по теории это смещение равно.

Красное смещение в спектрах небесных тел было обнаружено в 1923-26 гг. при изучении Солнца, а в 1925 г. при изучении спутника Сириуса. Все это явилось убедительным подтверждением ОТО.

Следует сказать, что ОТО произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной. Вокруг теории относительности развернулись широкие дискуссии, в которые включились люди разных специальностей, появилось множество научных и научно-популярных книг. Философские дискуссии, так или иначе связанные с идеями СТО и ОТО продолжаются и по сей день.

 

 

 

 

 

 

 

 

 

    1. Вопрос №176.

Понятие «экологическая катастрофа». Примеры прогнозируемых и реально  существующих катастроф. Катастрофа на Арале, её сущность и основные причины.

 

Признаком устойчивой экологической  системы является стабильность определенных характеристик. Так, например, экологически устойчивая система Земля имеет  постоянную массу и постоянную среднюю  температуру.

Под экологической катастрофой следует  понимать переход системы из одного устойчивого состояния в другое. Например, повышение средней температуры  Земли может привести к таянию полярных льдов, опустыниванию почв, вымиранию определенных видов флоры  и фауны, может быть, даже к гибели человечества. Экологические катастрофы могут иметь различные уровни - от локальных (гибель леса, осушение моря и т. д) до глобальных (в масштабах Земли, Солнечной системы, Галактики и даже Вселенной).

Человечество в процессе жизнедеятельности безусловно влияет на различные экологические системы. Примерами таких, чаще всего опасных, воздействий является осушение болот, вырубание лесов, уничтожение озонового слоя, поворот течения рек, сброс отходов в окружающую среду. Этим самым человек разрушает сложившиеся связи в устойчивой системе, что может привести к ее дестабилизации, то есть к экологической катастрофе.

Список причин способных  привести к глобальным экологическим  катастрофам:

  1. глобальное потепление, сдвиг климатических зон;
  2. озоновые дыры;
  3. частично обратимое загрязнение окружающей среды;
  4. неуничтожимые радиоактивные отходы;
  5. эрозия и сокращение площадей плодородных почв;
  6. демографический взрыв;
  7. истощение невозобновляемых минеральных ресурсов;
  8. энергетический кризис;
  9. резкий рост числа ранее неизвестных и зачастую неизлечимых болезней;
  10. недостаток продуктов питания, перманентное состояние голода большей части населения планеты;
  11. Истощение ресурсов мирового океана и его загрязнение.

 

Вот несколько примеров экологических  катастроф:

26 апреля 1986 года в 1:23 по московскому времени произошла авария на Чернобыльской АЭС, стены ядерного реактора были моментально разрушены. От высокой температуры загорелся графит, и бушующий огонь поднял в атмосферу тысячи смертоносных частиц. На свободу вырвались цезий, стронций, плутоний - страшные радиоактивные яды, обезвредить которые принципиально невозможно никакими способами. Переносимые ветром и дождями, они покрыли губительным ковром территорию площадью более 100.000 км, на которой в этот момент проживало не менее 800.000 человек. 30 человек погибли сразу, многие, никем ещё не сосчитанные, сотни или даже тысячи людей, заболели и умерли от губительного облучения, 100.000 человек были эвакуированы из своих домов.

 

В 1974 году американским штатам Миссисипи и Аризона угрожал двигавшийся с океана ураган "Камилла". Чтобы избежать возможных разрушений, было принято решение "расстрелять" его зарядами с йодистым серебром. Было известно, что это вещество способно действовать на возмущённую атмосферу, как успокаивающие таблетки на человека. Однако результат оказался прямо противоположным. После обстрела ураган, как будто взбесившийся зверь, лишь усилился и повернул в другую, ещё более опасную для жителей этого района, сторону. В результате "укрощения" "Камиллы" 234 человека погибли, а тысячи остались без крыши над головой.

 

3 декабря 1984 г. — на заводе пестицидов в Бхопале (Индия) произошла утечка смертельного газа метилизоцианата, эта катастрофа по числу непосредственно погибших в ней людей считается крупнейшей за всю историю развития промышленности. В результате ошибки оператор технического сбоя из резервуаров завода в воздух было выброшено вреднейшее химическое вещество, вызывающее удушье и потерю зрения. Только за три дня после катастрофы в городе умерло от удушья 2.000 человек!

 

В 1988  году во Флориде при заполнении дизельным топливом лопнул резервуар. Примерно 14.000 тонн горючего за считанные секунды гигантской волной высотой 10м перехлестнули через огораживающую насыпь и попали в реку Мононгахилу. Без воды осталось 23 тыс. человек, пришлось эвакуировать 1.200 семей, закрыть десятки предприятий.

 

В 1991 году в Северном море в результате технической неисправности затонула боевая атомная лодка "Комсомолец". Часть экипажа погибла, а на дне под ненадёжной защитой корпуса остались заряды с плутонием - одним из наиболее радиоактивных и ядовитых веществ на Земле (смертельная для человека доза - 0,0001 г.). Чем закончится эта катастрофа, пока совершенно невозможно предсказать.

 

28 января 1969 г. — на нефтяной платформы в канале Санта-Барбара (шт. Калифорния, США) произошел выброс нефти. За 11 дней в море вылилось около тысячи тонн нефти. Платформа продолжала протекать в течение нескольких лет.

Информация о работе Контрольная работа по "Концепции современного естествознания»