Защитные, декоративные гальванические покрытия

Автор работы: Пользователь скрыл имя, 11 Января 2013 в 11:59, курсовая работа

Краткое описание

Целью курсовой работы является изучение и раскрытие сущности гальванических покрытий.
Для раскрытия поставленной цели перед работой стоят следующие задачи:
- дать классификацию и рассмотреть назначение гальванических покрытий;
- охарактеризовать процесс подготовки поверхности перед нанесением гальванических покрытий;
- рассмотреть оборудование для гальванических операций.

Содержание

Введение
1. Классификация и назначение гальванических покрытий
1.1 Классификация гальванических покрытий
1.2 Требования к поверхностям и покрытиям
1.3 Назначение гальванических покрытий
2.Подготовка поверхности перед нанесением гальванических покрытий
2.1 Механическая обработка
2.2 Химическая обработка
2.3 Электрохимическая обработка
3. Оборудование для гальванических операций
Выводы и предложения

Прикрепленные файлы: 1 файл

Гальванические покрытия.doc

— 196.00 Кб (Скачать документ)

Для получения чисто  отшлифованной поверхности рекомендуется  при каждом последующем переходе применять круг более твердый, чем  при предыдущем переходе. В зависимости от назначения круги различаются видом и сортом абразивного материала, твердостью, связкой. При выборе абразивного круга необходимо учитывать твердость обрабатываемого материала, площадь соприкосновения круга с деталью. Чем тверже обрабатываемый материал и больше площадь соприкосновения круга с деталью, тем мягче должен быть круг. Из-за высокой плотности войлочных кругов их целесообразно применять для шлифования деталей с острыми и прямыми углами, отверстиями, вырезами — там, где нужно сохранить поверхность ровной и не «заваливать» края детали.

Для шлифования деталей  под защитно-декоративные покрытия наряду с войлочными широко применяют  матерчатые круги. Они отличаются упругостью и эластичностью. Их используют при  шлифовании как черных, так и цветных металлов. Благодаря эластичности они удобны для шлифования деталей сложного профиля. Применяемые на ряде заводов самоохлаждающиеся вентилируемые круги имеют стойкость значительно большую, чем обычные полировальные круги.

При полировании используют полировальные пасты. В их состав входят абразив и связующее вещество. В качестве абразива применяют окись железа, окись хрома, окись алюминия, венскую известь, а в качестве связующего вещества — стеарин, парафин, олеиновую кислоту, говяжье сало и др. Пасты могут быть твердыми и жидкими. Применение автоматической подачи паст увеличивает производительность процесса, создает удобство в работе и обеспечивает высокое качество обработки.

На ряде заводов в  связи с внедрением высокопроизводительного полировального оборудования применяют непрерывные гибкие абразивные ленты и лепестковые круги, собранные из шлифовальных шкурок с различным зерном абразива.

Обработка абразивными  лентами в сравнении со шлифованием  войлочными кругами имеет следующие  преимущества: поверхность соприкосновения ленты с деталью значительно больше, что способствует лучшему рассеянию теплоты; скорость движения ленты остается постоянной во все время шлифования; отпадает необходимость в балансировке рабочего инструмента; более оперативна переналадка станка; более безопасны условия труда.

В зависимости от состояния  поверхности детали шлифование ведут  в несколько переходов с постепенным  уменьшением величины зерна абразива от первой операции к последней.

После того как шлифованием сглажены основные микрошероховатости поверхности, иногда перед декоративным полированием круг с мелким абразивом, который применялся на предыдущем переходе шлифования, слегка смазывают парафином, техническим салом или специальными засалочными пастами. Эта операция желательна в тех случаях, когда необходимо предохранить деталь от выкрашивания и задира при тонком шлифовании поверхности.

Режим шлифования определяется материалом обрабатываемых деталей, частотой вращения круга и его давлением  на поверхность металла. При Шлифовании твердых материалов простой формы частота вращения круга больше, чем при обработке более мягких материалов и деталей сложной формы. При предварительном шлифовании, в отличие от тонкого, для снятия большего слоя металла увеличивают силу прижима деталей к вращающемуся кругу.

Галтовка. Этот процесс есть разновидность шлифования и полирования, заключающийся в очистке и отделке поверхности мелких деталей насыпью для снятия заусенцев, окалины, неровностей и уменьшения шероховатости поверхности.

Галтовку осуществляют в аппаратах  барабанного и колокольного типа, в которые загружают абразивные материалы и детали. При вращении барабана или колокола с выступающих  частей поверхности деталей снимается  тонкий слой металла в результате трения их между собой, а также с абразивными и полирующими материалами. Различают сухую (абразивную) галтовку и мокрую (жидкостно-абразивную) галтовку, которую в зависимости от применяемого размера абразива делят на подводное шлифование и подводное полирование.

Чаще всего для окончательной отделки винтов и болтов небольших размеров, поверхность которых должна быть блестящей, без заусенцев, применяют сухую галтовку. Ее осуществляют либо без абразива, либо с использованием тонкого абразива типа крокуса. Обработку изделий из мягких металлов и резьбовых изделий рекомендуется проводить в аппаратах колокольного типа, где они не испытывают сильных ударов.

При жидкостно-абразивной обработке  детали обрабатываются абразивом и  полирующими материалами в жидкой среде. В качестве абразива используют бой наждака, керамики, фарфора, корунда, кварцевый песок, стальную сечку, а для полирования — стальные шарики, дретесиые опилки, обрезки кожи, фетра и другие мягкие материалы. В качестве жидкой среды используют 2—3 %-ный раствор щелочи, мыльный, кислотный и другие растворы. Жидкостно-абразивную обработку обычно применяют перед нанесением покрытий, чтобы очистить детали от травильного шлама, а также с целью сглаживания поверхности .

Обработка щетками — процесс, при  котором в результате воздействия концов проволок поверхность металла очищается от ржавчины, окалины, краски, образовавшегося шлама и Других загрязнений. Его производят не только с целью очистки поверхности, но и для нанесения на детали штрихового декоративного рисунка. С этой целью операцию производят либо до нанесения покрытия, либо после.

Обработку щетками осуществляют обычно на шлифовально-полировальных станках. Для изготовления щеток применяют стальную, латунную, медную, нейзильберную проволоку. При обработке мягких гальванических покрытий используют также волосяные, капроновые либо травяные щетки.

При декоративной обработке щетки  обычно смачивают в содовом или  мыльном растворе. Скорость вращения щеточных кругов может изменяться от 450 до 1800 об/мин.

Струйно-абразивная обработка. Этот вид подготовки поверхности перед нанесением металлических покрытий имеет разновидности: пескоструйная, дробеструйная и жидкостно-абразивная обработка. Он имеет весьма широкое применение, так как является одним из наиболее эффективных способов подготовки поверхности для всех видов покрытий, не требующих полированной поверхности.

Наряду с высокой скоростью  и качеством очистки деталей  от окалины и ржавчины струйная обработка  создает поверхностный упрочняющий  наклеп, который положительно сказывается  на механических свойствах детали. В результате такой обработки с поверхности исчезают заусенцы, забоины, риски, т. е. те дефекты, которые отрицательно сказываются на коррозионной стойкости деталей с покрытиями, на качестве осаждаемых покрытий и на их декоративном, виде. Этот процесс широко применяют для создания равномерной матовой поверхности детали и повышения светопоглощающих характеристик деталей оптической аппаратуры.

 

 

 

 

 

 

2.2 Химическая обработка

 

Химическое обезжиривание поверхности  деталей перед нанесением гальванопокрытий, как правило, предшествует электрохимическому обезжириванию; в основном его применяют при наличии на деталях толстой жировой пленки.

Химический способ удаления жиров  основывается на взаимодействии с ними органических растворителей или  растворов щелочей, приводящих к их растворению, омылению или образованию эмульсий.

Органические растворители делят  на горючие и негорючие. К горючим  растворителям относятся бензин, керосин, бензол, толуол, ксилол, Уайт-спирит и др. Их в гальванотехнике не применяют. Более эффективными растворителями являются негорючие и хлорированные углеводороды: трихлорэтилен, тетрахлорэтилен, перхлорэтилен, четыреххлористый углерод, хладон-113 (старое название фреон-113).

Растворяющая способность различных  растворителей по отношению к маслам понижается в такой последовательности [кг/(м2-ч)]: хладон-113 — 4,45; трихлорэтилен — 3,10; ксилол — 2,20; тетрахлорэтилен — 1,70; бензин— 1,30; уайт-спирит — 0,90; керосин — 0,65.

Обезжириванию трихлорэтиленом можно  подвергать большинство металлов (сталь, медь, никель, сплавы этих металлов и др.). Следует избегать обработки трихлорэтиленом алюминия, магния и их сплавов, так как при этом происходят нежелательные реакции, сопровождающиеся выделением большого количества теплоты, что приводит к разложению реактива с образованием ядовитых соединений. Обработку трихлорэтиленом ведут в жидкой или паровой фазе. Если обезжиривание проводят в жидкой фазе, то детали следует обрабатывать последовательно в двух-трех ваннах с растворителем, нагретым до 60—70 С. Может быть применено струйное обезжиривание. Продолжительность очистки деталей составляет 3— 10 мин.

В состав щелочного обезжиривающего  водного раствора должны входить  вещества, способные нейтрализовать жирные кислоты и омылять растительные и животные жиры и масла, а также эмульгаторы, способные уменьшать величину свободной межфазной энергии на границе масла с обезжиривающим раствором и масла с поверхностью детали. Вещества, входящие в обезжиривающий раствор, не должны вызывать коррозию металла и должны легко удаляться при промывке водой. В большей степени этим требованиям соответствуют силикаты и фосфаты щелочных металлов, в меньшей — едкий и углекислый натрий (калий). Раствор Na3PO4 способствует уменьшению жесткости воды и легче удаляется водой с поверхности изделий при их промывке, растворы силикатов — труднее. Хуже всего смываются растворы Na2CO3 и NaOH.

Концентрация компонентов  этих растворов должна обеспечивать оптимальную эффективность их эмульгирующего действия. Почти во всех растворах  обезжиривания в качестве эмульгатора рекомендуется использовать силикаты щелочных металлов, которые при гидролизе образуют H2SiO3 в коллоидном состоянии, которая нерастворима. Ее способность диспергировать твердые вещества улучшает качество очистки поверхностей и предотвращает повторное осаждение загрязнений на поверхность деталей. Присутствие силиката в растворе препятствует разъеданию щелочами алюминия, цинка, стали и меди, а также потускнению и коррозии этих металлов между процессами обезжиривания и последующими операциями.

Травление проводят с  целью удаления с поверхности  деталей окалины, ржавчины или окисных  пленок, образовавшихся под влиянием окружающей среды, механической, термической, химической обработки. Травлению подвергают детали, прошедшие процесс обезжиривания.

Процесс травления черных металлов проводят в основном в растворах  минеральных кислот HC1, H2SO4 или их смесей. Установлено, что НС1 снимает окислы с поверхности преимущественно за счет их растворения, в то время как H2SO4 за счет подтравливания металла и механического удаления разрыхленного слоя окислов выделяющимся водородом. В 10 %-ной H2SO4 железо растворяется в 70 раз быстрее окислов, тогда как в 10 %-ной НС1 только в 10 раз. Скорость растворения в НС1 преимущественно возрастает с увеличением ее концентрации.

Скорость травления  в H2SO4 в основном зависит от температуры. Так, например, скорость травления стали в 3 %-ном растворе при 80 °С в 10 раз больше, чем в 8 %-ном растворе при 20 °С. Повышение концентрации H2SO4 в растворе до 25 % приводит к увеличению скорости растворения. При одинаковой температуре травления в НС1 происходит меньшее наво-дороживание стали, чем в H2SO4. С целью уменьшения травления чистого металла и преимущественного удаления окисного слоя, а также уменьшения вплоть до исключения наводоро-живания в растворы травителей вводят ингибитооы. Для НС1 — ингибиторы ПБ-5, БА-6, ПКУ, КПИ, И-1-А, И-1-В, И-1-Е, катапин и др., для H2SO4 — БА-6, уротропин, катапин, ЧМ и др. Ингибиторами могут служить также NaCl, KJ, FeSO4. Наибольшей степенью защиты от перетравления обладают ингибиторы ПКУ-М и ката-пины: 98—99,1 % в растворах H2SO4 и НС1 при 80—120 °С; БА-6 — 98 % в НС1; И-1-А и И-1-В — 94—96 % в растворах H2SO4 и НС1 при 80— 100 °С.

Максимальная степень защиты поверхности стали при применении ингибитора ЧМ в H2SO4 составляет 48 %, а максимально допустимая температура 60 °С.

Степень защиты значительно  определяет и степень наводороживания  стали, так как водород выделяется лишь в случае травления самого металла, что резко подавляется действиями ингибиторов.

Активация обязательная операция предназначена для удаления тончайших окисных пленок с поверхности  деталей. Ее проводят между процессами обезжиривания и нанесения металлопокрытий. Лучше, когда в процессе активации исключается промежуточная промывка. В этом случае необходимо, чтобы в состав ванны активации входили компоненты, перенос которых в ванну для осаждения металлического покрытия не приводит к ухудшению процесса нанесения металлов, например, хромовая промывка (активация) перед хромированием

 

 

 

2.3 Электрохимическая обработка

 

При электрохимическом обезжиривании так же как и при химическом используются водные растворы, содержащие едкие щелочи, соду, фосфаты, силикаты натрия и другие компоненты, но в меньшем количестве. При выборе состава электролита следует учитывать его электропроводимость, эмульгирующую и смачивающую способность, а также воздействие на материал катода.

Чем выше электропроводимость  электролита, тем большее количество электрического тока можно пропустить через него в единицу времени и, следовательно, применить большую плотность тока при том же направлении. Электропроводимость растворов солей уменьшается в ряду: едкий натр, силикат натрия, сода, фосфаты. Эмульгирующая и смачивающая способность возрастает в ряду: едкий натр, сода, фосфаты, силикаты.

При электрохимическом  обезжиривании либо применяют в  малом количестве ПАВ с малой  склонностью к пенообразованию, либо их не применяют совсем. Образование  большого количества пены может привести к взрыву при возникновении искры в случае накопления в пене гремучего газа. Во избежание этого применяют пеногасители: А-154, ПМО200А и др.

Электрохимическое обезжиривание, несмотря на высокую эффективность, применяют, в основном для очистки поверхности металла от небольшого слоя жира. Если поверхность деталей имеет значительные жировые загрязнения, ее предварительно обезжиривают химическим методом.

Процесс электрохимического обезжиривания можно вести и  на катоде, и на аноде. При одинаковом количестве тока, проходящем через электролит, на катоде выделяется в 2 раза больше газа, чем на аноде. Следовательно, катодное обезжиривание более эффективно. Вследствие наводороживания деталей при катодном обезжиривании часто обезжиривание проводят сначала на катоде, а затем на аноде, либо только на аноде.

Информация о работе Защитные, декоративные гальванические покрытия