Углеводный обмен

Автор работы: Пользователь скрыл имя, 16 Января 2014 в 14:24, реферат

Краткое описание

Углеводный обмен или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
Синтез и распад гликогена в тканях (гликогенез и гликогенолиз), прежде всего в печени.

Прикрепленные файлы: 1 файл

Углеводный обмен.docx

— 271.33 Кб (Скачать документ)

В. Гликоген печени.

Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах

Для предотвращения чрезмерного повышения концентрации глюкозы в крови при пищеварении основное значение имеет потребление глюкозы печенью и мышцами, в меньшей мере — жировой тканью. Следует напомнить, что более половины всей глюкозы (60 %), поступающей из кишечника в воротную вену, поглощается печенью. Около 2/3 этого количества откладывается в печени в форме гликогена, остальная часть превращается в жиры и окисляется, обеспечивая синтез АТФ. Ускорение этих процессов инициируется повышением инсулинглюкагонового индекса. Другая часть глюкозы, поступающей из кишечника, попадает в общий кровоток. Примерно 2/3 этого количества поглощается мышцами и жировой тканью. Это обусловлено увеличением проницаемости мембран мышечных и жировых клеток для глюкозы под влиянием высокой концентрации инсулина. Глюкоза в мышцах откладывается в форме гликогена, а в жировых клетках превращается в жиры. Остальная часть глюкозы общего кровотока поглощается другими клетками (инсулинонезависимыми).

При нормальном ритме питания и сбалансированном рационе концентрация глюкозы в крови и снабжение глюкозой всех органов поддерживается главным образом за счёт синтеза и распада гликогена. Лишь к концу ночного сна, то есть к концу самого большого перерыва между приёмами пищи, может несколько увеличиться роль глюконеогенеза, значение которого будет возрастать, если завтрак не состоится и голодание продолжится

Регуляция содержания глюкозы в крови при предельном голодании

Дополнительные сведения: инсулин

Дополнительные сведения: глюкагон

При голодании в течение первых суток исчерпываются запасы гликогена в организме, и в дальнейшем источником глюкозы служит только глюконеогенез (из лактата, глицерина и аминокислот). Глюконеогенез при этом ускоряется, а гликолиз замедляется вследствие низкой концентрации инсулина и высокой концентрации глюкагона. Но, кроме того, через 1-2 сут существенно проявляется действие и другого механизма регуляции — индукции и репрессии синтеза некоторых ферментов: снижается количество гликолитических ферментов и, наоборот, повышается количество ферментов глюконеогенеза. Изменение синтеза ферментов также связано с влиянием инсулина и глюкагона.

Начиная со второго  дня голодания достигается максимальная скорость глюконеогенеза из аминокислот и глицерина. Скорость глюконеогенеза из лактата остаётся постоянной. В результате синтезируется около 100 г глюкозы ежесуточно, главным образом в печени.

Следует отметить, что при голодании глюкоза  не используется мышечными и жировыми клетками, поскольку в отсутствие инсулина не проникает в них и таким образом сберегается для снабжения мозга и других глюкозозависимых клеток; обеспечение энергетических потребностей мышц и других тканей происходит за счёт жирных кислот и кетоновых тел. Поскольку при других условиях мышцы — один из основных потребителей глюкозы, то прекращение потребления глюкозы мышцами при голодании имеет существенное значение для обеспечения глюкозой мозга. При достаточно продолжительном голодании (несколько дней и больше) мозг начинает использовать и другие источники энергии (например жиры).

Вариантом голодания  является несбалансированное питание, в частности такое, когда по калорийности рацион содержит мало углеводов — углеводное голодание. В этом случае также активируется глюконеогенез, и для синтеза глюкозы используются аминокислоты и глицерол, образующиеся из пищевых белков и жиров.

Регуляция содержания глюкозы в крови в период покоя и во время физической нагрузки

Как в период покоя, так и во время продолжительной  физической работы сначала источником глюкозы для мышц служит гликоген, запасённый в самих мышцах, а затем  глюкоза крови. Известно, что 100 г  гликогена расходуется на бег  примерно в течение 15 мин, а запасы гликогена в мышцах после приёма углеводной пищи могут составлять 200—300 г.

На рисунке представлены значения гликогена печени и глюконеогенеза для обеспечения глюкозой работы мышц разной интенсивности и продолжительности.

Регуляция гликолиза и глюконеогенеза в печени

По сравнению  с другими органами печень отличается наиболее сложным обменом глюкозы. Кроме пары противоположных процессов (синтеза и распада гликогена), в печени могут происходить ещё два противоположно направленных процесса — гликолиз и глюконеогенез. В большинстве других органов происходит только гликолиз. Переключение печени с гликолиза на глюконеогенез и обратно происходит с участием инсулина и глюкагона и осуществляется с помощью:

  • аллостерической регуляции активности ферментов;
  • ковалентной модификации ферментов путём фосфорилирования/дефосфорилирования;
  • индукции/репрессии синтеза ключевых ферментов.

Регуляторные воздействия  направлены на ферменты, катализирующие необратимые стадии гликолиза и  глюконеогенеза, сочетание которых  называют «субстратными», или «холостыми»  циклами.

Регуляция скорости реакции гликолиза и глюконеогенеза, составляющих субстратные циклы

«Субстратные» циклы — парные комбинации процессов синтеза и распада метаболитов. Как уже упоминалось, сочетание процессов синтеза и распада гликогена или необратимых реакций гликолиза и соответствующих им необратимых реакций глюконеогенеза может составить подобный цикл. Название «субстратный цикл» означает объединение реакций синтеза и распада субстрата. Название «холостой» отражает результат работы подобного цикла, заключающийся в бесполезном расходовании АТФ. Хотя существование «холостых» циклов нелогично, тем не менее они могут функционировать. Более того, эти циклы могут быть мишенью регуляторных воздействий, так как составляющие их реакции катализируют разные ферменты. Реципрокное изменение активности этих ферментов предотвращает одновременное протекание противоположных процессов.

Изменение в печени гликолитического направления на глюконеогенез и обратно при смене абсорбтивного состояния на постабсорбтивное или при голодании происходит главным образом в результате регуляции активности ферментов, катализирующих реакции субстратных циклов. Эти циклы обозначены цифрами I, II, III на рисунке, представляющем общую картину регуляции гликолиза и глюконеогенеза в печени.

Направление реакции  первого субстратного цикла регулируется главным образом концентрацией  глюкозы. При пищеварении концентрация глюкозы в крови повышается (до 8-10 ммоль/л). Активность глюкокиназы  в этих условиях максимальна. Вследствие этого ускоряется гликолитическая  реакция образования глюкозо-6-фосфата. Кроме того, инсулин индуцирует синтез глюкокиназы и ускоряет тем самым  фосфорилирование глюкозы. Поскольку  глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть  глюкозо-6-фосфата в абсорбтивном периоде направляется на синтез гликогена  и по гликолитическому пути.

Направление реакций  второго субстратного цикла зависит  от активности фосфофруктокиназы и  фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата. Фруктозо-2,6-бисфосфат — метаболит, образующийся в незначительных количествах из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путём фосфорилирования фруктозо-6-фосфата катализирует бифункциональный фермент (БИФ), который катализирует также и обратную реакцию. Однако превращение фруктозо-2,6-бисфосфата в фруктозо-6-фосфат не является обратимым процессом. Образование фруктозо-2,6-бисфосфата требует затрат АТФ, а при образовании фруктозо-6-фосфата из фруктозо-2,6-бисфосфата гидролитически отщепляется неорганический фосфат.

В реакции фосфорилирования фруктозо-6-фосфата фермент проявляет  киназную активность, а при дефосфорилировании образованного фруктозо-2,6-бисфосфата — фосфатазную. Это обстоятельство и определило название фермента «бифункциональный».

Киназная активность БИФ проявляется, когда фермент  находится в дефосфорилированной  форме (БИФ-ОН). Дефосфорилированная  форма БИФ характерна для абсорбтивного  периода, когда инсулин/глюкагоновый индекс высокий. В этот период количество фруктозо-2,6-бисфосфата увеличивается.

Киназную и фосфатазную  реакции катализируют разные активные центры БИФ, но в каждом из двух состояний  фермента (фосфорилированном и дефосфорилированном) один из активных центров ингибирован. Регуляторное влияние фруктозо-2,6-бисфосфата заключается в том, что он аллостерически активирует фосфофруктокиназу (фермент  гликолиза). При этом фруктозо-2,6-бисфосфат  снижает ингибирующее действие АТФ  на этот фермент в абсорбтивном периоде  и повышает его сродство к фруктозо-6-фосфату. В то же время фруктозо-2,6-бисфосфат  ингибирует фруктозо-1,6-бисфосфатазу (фермент  глюконеогенеза). Итак, в абсорбтивном периоде уровень фруктозо-2,6-бисфосфата повышается, что приводит к активации  фосфофруктокиназы и ускорению  гликолиза.

Результатом уменьшения количества фруктозо-2,6-бисфосфата в  постабсорбтивном периодебудет снижение активности фосфофруктокиназы, замедление гликолиза и переключение гликолиза  на глюконеогенез. Регуляторное влияние  фруктозо-2,6-бисфосфата представлено на рисунке:

В регуляции третьего субстратного цикла основная роль принадлежит  пируваткиназе, фосфорилированная  форма которой неактивна, а дефосфорилированная — активна.

период пищеварения инсулин активирует фосфопротеинфосфатазу, которая дефосфорилирует пируваткиназу, переводя её в активное состояние. Кроме того, инсулин в печени влияет на количество ферментов, индуцируя синтез пируваткиназы и репрессируя синтез фосфоенолпируваткарбоксикиназы. Следовательно, гликолитическая реакция фосфоенолпируват → пируват ускоряется при пищеварении. Эта же реакция замедляется в постабсорбтивном состоянии под влиянием глюкагона, который опосредованно через цАМФ-зависимую протеинкиназу фосфорилирует и инактивирует пируваткиназу.

При длительном голодании  глюкагон ускоряет глюконеогенез. Это  достигается не только путём фосфорилирования пируваткиназы и снижением скорости гликолиза, но и путём индукции синтеза  ферментов глюконеогенеза: фосфоенолпируваткарбоксикиназы, фруктозо-1,6-бисфосфатазы и глюкозо-6-фосфатазы. Известно, что глюкагон, фосфорилируя опосредованно транскрипционные факторы, влияет на их активность и таким  образом индуцирует синтез этих ферментов  глюконеогенеза. Кроме того, синтез фосфоенолпируваткарбоксикиназы при  длительном голодании индуцируется кортизолом, однако это происходит в результате включения другого механизма действия, характерного для стероидных гормонов.

Координация скорости реакции II и III субстратных циклов достигается  с помощью фруктозо-1,6-бисфосфата — продукта II субстратного цикла (гликолитическое направление), который является аллостерическим активатором пируваткиназы. В период пищеварения вследствие ускорения начальных стадий гликолиза концентрация фруктозо-1,6-бисфосфата повышается, что приводит к дополнительной активации пируваткиназы.

Необходимо отметить, что противоположные реакции  каждого из субстратных циклов могут  протекать одновременно. Соответственно, гликолиз и глюконеогенез в печени в какой-то мере тоже могут происходить  одновременно, хотя их относительные  скорости изменяются. Так, при пищеварении  преобладает гликолитическое направление, а в постабсорбтивном состоянии — направление глюконеогенеза. Например, реакция глюконеогенеза пируват → оксалоацетат может протекать при любых состояниях организма. Это объясняется необходимостью поддерживать концентрацию оксалоацетата на определенном уровне, потому что оксалоацетат используется не только в глюконеогенезе, но и в других процессах, таких как цитратный цикл, трансмембранный перенос веществ, синтез аминокислот.

Значение гликолиза в печени для синтеза жиров

Дополнительные сведения: липидный обмен

Основным значением  ускорения гликолиза в печени в период пищеварения является образование  дигидроксиацетонфосфата и ацетил-КоА — исходных веществ для синтеза жира. Образование ацетил-КоА из пирувата в ходе реакции, катализируемой ПДК, регулируется разными способами.

В абсорбтивном периоде  ПДК (пируватдикарбоксилаза) находится  в дефосфорилированной (активной) форме, следовательно, декарбоксилирование  пирувата ускоряется. Образуемый ацетил-КоА используется в основном двумя путями: для синтеза жирных кислот и в цитратном цикле. В период пищеварения ускоряются образование ацетил-КоА и его использование для синтеза жирных кислот. Необходимый для синтеза жира α-глицерофосфат образуется в реакции восстановления из дигидроксиацетонфосфата.

Аллостерическая регуляция аэробного распада глюкозы и глюкогенеза в печени энергетическим статусом клетки

Дополнительные сведения: Общий путь катаболизма

Аллостерическая регуляция  скорости гликолиза, зависимая от изменения  соотношения АТФ/АДФ, направлена на изменение скорости использования  глюкозы непосредственно клетками печени. Глюкоза в клетках печени используется не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Основными потребителями АТФ в гепатоцитах являются процессы трансмембранного переноса веществ, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих процессах зависит скорость его синтеза. АТФ, АДФ и АМФ, а также НАД+ и НАДН служат аллостерическими эффекторами некоторых гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и НАДН ингибируют пируваткиназу, а АДФ активирует пируваткарбоксилазу.

Следовательно, при  усилении расходования АТФ и снижении его концентрации с одновременным  увеличением концентрации АМФ, активируется гликолиз и образование АТФ, а  глюконеогенез при этом замедляется. Кроме того, от соотношения АТФ/АДФ, АМФ и НАД/НАДН зависит скорость реакций общего пути катаболизма.

Влияние алкоголя на углеводный обмен

Дополнительные сведения: Токсикология этанола

Дополнительные сведения: Диетотерапия сахарного диабета

Алкоголь снижает  активность ферментов гликолиза, глюконеогенеза[8], пентозофосфатного цикла, цикла Кребса. В результате чего в тканях печени, крови, ликворе и в особенности мозга, накапливаются промежуточные продукты метаболизма углеводов, которые приводят к «глюкозному голоду» клеток — то есть нарушению утилизации глюкозы клетками тканей[9].

Информация о работе Углеводный обмен