Свойство меди и классификация медных сплавов

Автор работы: Пользователь скрыл имя, 27 Октября 2014 в 19:31, лекция

Краткое описание

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.
Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и отсутствием “зазоров” между ион-атомами.

Содержание

3. Медь и её сплавы. Область применения
3.1 Физические свойства
3.2 Химические свойства
3.2.1 Отношение к кислороду
3.2.2 Взаимодействие с водой
3.2.3 Взаимодействие с кислотами
3.2.4 Отношение к галогенам и некоторым другим неметаллам
3.2.5 Оксид меди
3.2.6 Гидроксиды меди
3.2.7 Сульфаты
3.2.8 Карбонаты
3.2.9 Качественные реакции на ионы меди
3.3 Сплавы
3.3.1 Латуни
3.3.2 Бронзы
3.3.3 Медноникелевые сплавы
3.4 Применение меди
Список использованных источников

Прикрепленные файлы: 1 файл

№3 Схемотехника.docx

— 76.28 Кб (Скачать документ)

Содержание

1. Железоуглеродистые сплавы. Производство чугуна и доменный  процесс

1.1 Железоуглеродистые сплавы

1.1.1 Фазовые состояния

1.1.2 Строение железоуглеродистых  сплавов

1.1.3 Полиморфные превращения  железоуглеродистых сплавов

1.2 Производство чугуна  и доменный процесс

1.2.1 Доменный процесс

1.2.2 Продукты доменной  плавки

2. Термическая обработка  железоуглеродистых сплавов

2.1Превращения в стали  при нагревании

2.2 Превращения в стали  при охлаждении

2.3 Основные виды термической  обработки стали

2.3.1 Отжиг стали

2.3.2 Закалка стали

2.3.3 Отпуск стали

3. Медь и её сплавы. Область применения

3.1 Физические свойства

3.2 Химические свойства

3.2.1 Отношение к кислороду

3.2.2 Взаимодействие с водой

3.2.3 Взаимодействие с кислотами

3.2.4 Отношение к галогенам  и некоторым другим неметаллам

3.2.5 Оксид меди

3.2.6 Гидроксиды меди

3.2.7 Сульфаты

3.2.8 Карбонаты

3.2.9 Качественные реакции  на ионы меди

3.3 Сплавы

3.3.1 Латуни

3.3.2 Бронзы

3.3.3 Медноникелевые сплавы

3.4 Применение меди

Список использованных источников

 

3. Медь и её сплавы. Область применения

3.1 Физические свойства

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.

Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и отсутствием “зазоров” между ион-атомами.

Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек – “усов”. Как оказалось такая медь в сто раз прочнее, чем обычная.

Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.

При повышении валентности понижается окраска меди, например CuCl – белый, Cu2O – красный, CuCl + H2O – голубой, CuO – черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.

Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её применение в электронике.

Медь кристаллизируется по типу централизованного куба (рис 3).

Рисунок 3. Кристаллическая решетка меди.

3.2 Химические свойства

Строение атома.

Рисунок 4. Схема строения атома меди.

 

3.2.1 Отношение к  кислороду

Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

 (15)

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

 (16)

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например при 600-800 0C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Qобразования (Cu2O) = 84935 кДж.

Рисунок 5. Строение оксидной пленки меди.

3.2.2 Взаимодействие с водой

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

 (17)

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

 (18)

 (19)

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

 (20)

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

 (21)

 (22)

 

3.2.3 Взаимодействие с кислотами

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

 (23)

3.2.4 Отношение к галогенам и некоторым другим неметаллам

Q образования (CuCl) = 134300 кДж

Q образования (CuCl2) = 111700 кДж

 (24)

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.

Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

 (25)

 

Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

3.2.5 Оксид меди

При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди

 (26)

Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.

Под слоем меди расположен окисел розового цвета – закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков:

 (27)

Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте:

 (28)

 

Пластинку промывают, высушивают и прокаливают при невысокой температуре – и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди – отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды – к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток.

3.2.6 Гидроксиды меди

Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли:

 (29)

Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:

 (30)

 

Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета:

 (31)

Это нестойкое соединение, которое легко окисляется до гидроксида меди (II):

 (32)

Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей:

 (33)

 (34)

Таким образом, гидроксид меди (II) может диссоциировать и как основание:

 (35)

и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:

 (36)

 

3.2.7 Сульфаты

Наибольшее практическое значение имеет CuSO4*5H2O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется:

 (37)

Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.

3.2.8 Карбонаты

Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.

3.2.9 Качественные реакции на ионы меди

Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди

 (38)

Медь интенсивно окрашивает пламя в зеленый цвет.

 

3.3 Сплавы

3.3.1 Латуни

Это двойные и многокомпонентные медные сплавы, в которых основной легирующий компонент — цинк (содержание не превышает 45 %). Среди медных сплавов латуни получили наибольшее распространение в промышленности благодаря сочетанию высоких механических и технологических свойств. По сравнению с медью латуни обладают более высокой прочностью, коррозионной стойкостью, лучшими литейными свойствами, имеют более высокую температуру рекристаллизации. Латуни — наиболее дешевые медные сплавы.

Двойные (простые) латуни относятся к системе Cu—Zn (рис. 19.3). Медь с цинком образует кроме a -твердого раствора на основе меди ряд промежуточных фаз b, g и т. д.

Фаза b — это твердый раствор на основе электронного соединения CuZn (фаза Юм—Розери) с решеткой ОЦК. При охлаждении при температуре около 450 ° С b -фаза переходит в упорядоченное состояние (b ® b ¢), причем b ¢ -фаза в отличие от b -фазы является более твердой и хрупкой.

Фаза g — твердый раствор на основе электрон-ного соединения Cu5Zn8 отличается очень высокой хрупкостью и ее присутствие в промышленных конструкционных сплавах исключается.

Механические свойства латуни определяются свойствами фаз. По мере увеличения содержания цинка в латунях их прочность возрастает (рис. 19.4). Максимум прочности достигается в двухфазной области (a + b) при содержании цинка около 45 %. При большем содержании цинка прочность резко уменьшается из-за высокой хрупкости b ¢ -фазы. Поэтому в промышленности применяют преимущественно a - и (a + b)-латуни. Представляют интерес как основа сплавов с эффектом памяти формы b -латуни.

Все латуни, содержащие более 20 % Zn, склонны к коррозионному растрескиванию. Это растрескивание проявляется при хранении и эксплуатации изделий, в которых имеются остаточные растягивающие напряжения, во влажной атмосфере с небольшим количеством аммиака или сернистого газа. Установлена определенная связь между данным явлением и временем года, что объясняется закономерными изменениями состава атмосферы. В связи с этим это явление было названо «сезонным растрескиванием» («сезонная болезнь»). Другой формой коррозии латуни является обесцинкование, которое характерно для латуней с повышенным содержанием цинка (Л68, ЛС59-1 и др.). Высокомедистые латуни практически не подвергаются обесцинкованию. Для уменьшения обесцинкования в латуни вводят небольшое количество мышьяка (0,02–0,06 %).

Информация о работе Свойство меди и классификация медных сплавов