Соединительные ткани

Автор работы: Пользователь скрыл имя, 28 Мая 2013 в 08:36, реферат

Краткое описание

У многоклеточных организмов большинство клеток окружено вне- или межклеточным матриксом. Межклеточный матрикс - сложный комплекс связанных между собой макромолекул. Эти макромолекулы (белки и гетерополисахариды), как правило, секретируются самими клетками, а в межклеточном матриксе из них строится упорядоченная сеть. Межклеточный матрикс, окружающий клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

Содержание

1. Структура внеклеточного матрикса
2. Неколлагеновые белки
3. Синтез коллагена
4. Биохимическая основа цинги

Прикрепленные файлы: 1 файл

бх 1.docx

— 79.86 Кб (Скачать документ)

Санкт-Петербургский Государственный  Педиатрический Медицинский Университет

 

 

 

Кафедра биологической химии

 

 

 

Соединительные ткани

 

 

                                                              Выполнила студентка 5 курса

                                                                  Стоматологического факультета

                               561 группы

                                                               Казакова Наталья Викторовна

 

 

 

 

 

Санкт-Петербург 2013 г.

 

 

Содержание

 

  1. Структура внеклеточного матрикса
  2. Неколлагеновые белки
  3. Синтез коллагена
  4. Биохимическая основа цинги

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Структура внеклеточного  матрикса

 

У многоклеточных организмов большинство клеток окружено вне- или межклеточным матриксом. Межклеточный матрикс - сложный комплекс связанных между собой макромолекул. Эти макромолекулы (белки и гетерополисахариды), как правило, секретируются самими клетками, а в межклеточном матриксе из них строится упорядоченная сеть. Межклеточный матрикс, окружающий клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

Межклеточный матрикс  вместе с клетками разного типа, которые в нём находятся (фибробласты, хондро- и остеобласты, тучные клетки и макрофаги), часто называют соединительной тканью.

Межклеточный матрикс  выполняет в организме самые  разнообразные функции:

  • образует каркас органов и тканей;
  • является универсальным "биологическим" клеем;
  • участвует в регуляции водно-солевого обмена;
  • образует высокоспециализированные структуры (кости, зубы, хрящи, сухожилия, базальные мембраны).

 

  Основными компонентами  внеклеточного матрикса являются:

  • Белки – коллаген и эластин
  • Гликозаминогликаны
  • Протеогликаны
  • Неколлагеновые структурные белки – фибронектин, ламинин, тенасцин, остеонектин и др.

 

 

 

 

Неколлагеновые белки

 

Гликопротеины это сложные  белки, включающие белок и небелковый компонент, который представлен  углеводами. Различают собственно гликопротеины  и протеогликаны. Различие в структуре этих белков зависит от соотношения белкового и углеводного компонента.

 

Фибронектин – крупный белок, в полипептидной цепи до 2500 остатков аминокислот. Молекула состоит из 2-х субъединиц, соединенных дисульфидными мостиками. Субъединица фибронектина имеет модульное строение. Каждый модуль – это типовая последовательность аминокислот. Вся молекула содержит три типа модулей – фибронектины. Фибронектин обладает свойством узнавание других молекул посредством, имеющихся многочисленных центров узнавания.

 

Ламинин – ведущий гликопротеид  базальных мембран. Он представляет также большую молекулу, состоящую из 3 субъединиц, соединенных дисульфидными мостиками, формируя крестообразную структуру с глобулярными концами. Основная роль – связывания с клетками  и взаимодействие с др компонентами.

Нидоген – локализуется в базальных мембранах, он тесно ассоциирован с ламинином и имеет сходное строение. Обеспечивает контакты между клетками и межклеточными структурами.

 

Гиалуроновая кислота - находится во многих органах и тканях. В хряще она связана с белком и участвует в образовании протеогликановых агрегатов, в некоторых органах (стекловидное тело глаза, пупочный канатик, суставная жидкость) встречается и в свободном виде. Предполагается, что в суставной жидкости гиалуроновая кислота выполняет роль смазочного вещества, уменьшая трение между суставными поверхностями.

 

Хондроитинсульфаты - самые распространённые гликозаминогликаны в организме человека; они содержатся в хряще, коже, сухожилиях, связках, артериях, роговице глаза. Хондроитинсульфаты являются важным составным компонентом агрекана - основного протеогликана хрящевого матрикса. В организме человека встречаются 2 вида хондроитинсульфатов: хондроитин-4-сульфат и хондроитин-6-сульфат. Они построены одинаковым образом, отличие касается только положения сульфатной группы в молекуле N-ацетилгалактозамина (см. схему А).

Одна  полисахаридная цепь хондроитинсульфата содержит около 40 повторяющихся дисахаридных единиц и имеет молекулярную массу 10- 10Д.

Кератансульфагы - наиболее гетерогенные гликозаминогликаны; отличаются друг от друга по суммарному содержанию углеводов и распределению в разных тканях. Кератансульфат I находится в роговице глаза и содержит кроме повторяющейся дисахаридной единицы L-фукозу, D-маннозу и сиаловую кислоту. Кератансульфат II был обнаружен в хрящевой ткани, костях, межпозвоночных дисках. В его состав помимо Сахаров дисахаридной единицы входят N-ацетилгалактозамин, L-фукоза, D-манноза и сиаловая кислота. Кератансульфат II входит в состав агрекана и некоторых малых протеогликанов хрящевого матрикса. В отличие от других гликозаминогликанов, кератансульфаты вместо гексуроновой кислоты содержат остаток галактозы Молекулярная масса одной цепи кератансуль-фата колеблется от 4 × 10до 20 × 10Д.

Дерматансульфат широко распространён в тканях животных, особенно он характерен для кожи, кровеносных сосудов, сердечных клапанов. В составе малых протеогликанов (бигликана и декорина) дерматансульфат содержится в межклеточном веществе хрящей, межпозвоночных дисков, менисков.

Гепарин - важный компонент противосвёртывающей системы крови (его применяют как антикоагулянт при лечении тромбозов). Он синтезируется тучными клетками и находится в гранулах внутри этих клеток. Наибольшие количества гепарина обнаруживаются в лёгких, печени и коже. Дисахаридная единица гепарина похожа на дисахаридную единицу гепарансульфата. Отличие этих гликозаминогликанов заключается в том, что в гепарине больше N-сульфатных групп, а в гепарансульфате больше N-ацетильных групп. Молекулярная масса гепарина колеблется от 6 × 10до 25 × 10Д

 

Гепарансульфат находится во многих органах и тканях. Он входит в состав протеогликанов базальных мембран. Гепарансульфат является постоянным компонентом клеточной поверхности. Структура дисахаридной единицы гепарансульфата такая же, как у гепарина. Молекулярная масса цепи гепарансульфата колеблется от 5 × 10до 12 × 10Д.

 

 

 

 

 

Синтез коллагена

 

  Синтез и созревание коллагена - сложный многоэтапный процесс, начинающийся в клетке, а завершающийся в межклеточном матриксе. Синтез и созревание коллагена включают в себя целый ряд посттрансляционных изменений (рис. 15-1):

  • гидроксилирование пролина и лизина с образованием гидроксипролина (Hyp) и гидроксилизина (Hyl);
  • гликозилирование гидроксилизина;
  • частичный протеолиз - отщепление "сигнального" пептида, а также N- и С-конце-вых пропептидов;
  • образование тройной спирали.

Синтез полипептидных  цепей коллагена

Полипептидные цепи коллагена  синтезируются на полирибосомах, связанных с мембранами ЭР, в виде более длинных, чем зрелые цепи, предшественников - препро-α-цепей. У этих предшественников имеется гидрофобный "сигнальный" пептид на N-конце, содержащий около 100 аминокислот.

Основная функция сигнального  пептида - ориентация синтеза пептидных  цепей в полость ЭР. После выполнения этой функции сигнальный пептид сразу  же отщепляется. Синтезированная молекула проколлагена содержит дополнительные участки - N- и С-концевые пропептиды, имеющие около 100 и 250 аминокислот, соответственно. В состав пропептидов входят остатки цистеина, которые образуют внутри- и межцепочечные (только в С-пептидах) S-S-связи. Концевые пропептиды не образуют тройную спираль, а формируют глобулярные домены. Отсутствие N- и С- концевых пептидов в структуре проколлагена нарушает правильное формирование тройной спирали.

Посттрансляционные модификации коллагена

Гидрокслирование пролина и лизина. Роль витамина С

Гидроксилирование пролина и лизина начинается в период трансляции коллагеновой мРНК на рибосомах и продолжается на растущей полипептидной цепи вплоть до её отделения от рибосом. После образования тройной спирали дальнейшее гидроксилирование пролиловых и лизиловых остатков прекращается.

Реакции гидроксилирования катализируют ок-сигеназы, связанные с мембранами микросом. Пролиловые и лизиловые остатки в Y-положении пептида (Гли-х-у)подвергаются действию, соответственно, пролил-4-гидроксилазы и лизил-5-гидроксилазы. Пролил-3-гидроксилаза действует на некоторые остатки пролина в Х-положениях. Необходимыми компонентами этой реакции являются оскетоглутарат, Ои витамин С (аскорбиновая кислота). Донором атома кислорода, который присоединяется к С-4 пролина, является молекула О2, второй атом Овключается в сукцинат, который образуется при декарбоксилировании α-кетоглутарата, а из карбоксильной группы а-кетоглутарата образуется СО(см. схему А на с. 691).

Гидроксилазы пролина и лизина содержат в активном центре атом железа Fe2+. Для сохранения атома железа в ферроформе необходим восстанавливающий агент. Роль этого агента выполняет кофермент гидроксилаз - аскорбиновая кислота, которая легко окисляется в дегидроаскорбиновую кислоту. Обратное превращение происходит в ферментативном процессе за счёт восстановленного глутатиона Гидроксилирование пролина необходимо для стабилизации тройной спирали коллагена, ОН-группы гидроксипролина (Hyp) участвуют в образовании водородных связей. А гидроксилирование лизина очень важно для последующего образования ковалентных связей между молекулами коллагена при сборке коллагеновых фибрилл. При цинге - заболевании, вызванном недостатком витамина С, нарушается гидроксилирование остатков пролина и лизина. В результате этого образуются менее прочные и стабильные коллагеновые волокна, что приводит к большой хрупкости и ломкости кровеносных сосудов с развитием цинги. Клиническая картина цинги характеризуется возникновением множественных точечных кровоизлияний под кожу и слизистые оболочки, кровоточивостью дёсен, выпадением зубов, анемией.

Гликозилирование гидроксилизина

После завершения гидроксилирования при участии специфических гликозилтрансфераз в состав молекулы проколлагена вводятся углеводные группы. Чаще всего этими углеводами служат галактоза или дисахарид галактозилглюкоза (рис. 15-2).

Они образуют ковалентную О-гликозидную связь с 5-ОН-группой гидроксилизина. Гликозилирование гидроксилизина происходит в коллагене, ещё не претерпевшем спирализации, и завершается после образования тройной спирали. Число углеводных единиц в молекуле коллагена зависит от вида ткани. Так, например, в коллагене сухожилий (тип I) это число равно 6, а в коллагене капсулы хрусталика (тип IV) - НО. Роль этих углеводных групп неясна; известно только, что при наследственном заболевании, причиной которого является дефицит лизилгидроксилазы (синдром Элерса - Данло-Русакова, тип VI), содержание гидроксилизина и углеводов в образующемся коллагене снижено; возможно, это является причиной ухудшения механических свойств кожи и связок у людей с этим заболеванием.

Образование проколлагена и его секреция в  
межклеточное пространство

После гидроксилирования и гликозилирования каждая про-α-цепь соединяется водородными связями с двумя другими про-α-цепями, образуя тройную спираль проколлагена. Эти процессы происходят ещё в просвете ЭР и начинаются после образования межцепочечных дисульфидных мостиков в области С-концевых пропептидов. Из ЭР молекулы проколлагена перемещаются в аппарат Гольджи, включаются в секреторные пузырьки и секретируются в межклеточное пространство.

 

 

 

 

 

Биохимическая основа цинги

 

Витамин С (аскорбиновая кислота). Аскорбиновую кислоту можно рассматривать как производное углевода L-гулозы. Онаявляется донором водорода в окислительно-восстановительных реакциях, следовательно, существует в двух формах - окисленной и восстановленной:

Аскорбиновая кислота  участвует в процессах превращения  ароматических аминокислот с  образованием некоторых нейромедиаторов, в синтезе кортикостероидов, в процессах кроветворения и в образовании коллагена - главного внеклеточного компонента соединительной ткани.

Метаболическая роль витамина С определяется его участием в ряде биохимических процессов

  • образование нейромедиатора серотонина из триптамина
  • образование белка коллагена — основы соединительной ткани
  • образование гормонов щитовидной железы
  • обеспечивает нормальное проникновение глюкозы в клетки

Недостаточность аскорбиновой кислоты приводит к заболеванию, называемому цингой. Это заболевание выражается в повышении проницаемости и хрупкости кровеносных сосудов, что приводит к подкожным кровоизлияниям. При недостатке витамина С снижается возможность использования запасов железа для синтеза гемоглобина в клетках костного мозга, что приводит к развитию анемии. На основе возникших биохимических нарушений развиваются внешние признаки проявления цинги: расшатывание и выпадение зубов, кровоточивость десен, отеки и боли в суставах, бледность (анемичность) кожных покровов, поражение костей.

 

 


Информация о работе Соединительные ткани