Контрольная работа по «Физиология и биохимия растений»

Автор работы: Пользователь скрыл имя, 26 Ноября 2014 в 15:44, контрольная работа

Краткое описание

10. Внутренние и внешние факторы, влияющие на проницаемость цитоплазмы.
Внешние условия не только регулируют степень открытости устьиц, но и оказывают влияние непосредственно на процесс транспирации. Зависимость интенсивности испарения от условий среды подчиняется уравнению Дальтона. Транспирация также подчиняется этой формуле, правда, с отклонениями. Чем больше дефицит влажности воздуха, тем ниже (более отрицателен) его водный потенциал и тем быстрее идет испарение.

Прикрепленные файлы: 1 файл

Физиология и биохимия растений.docx

— 141.08 Кб (Скачать документ)

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех диррольных пятичленных колец, соединенных между с 5-ю углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл а только тем, что вместо метильной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилл а имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через

Спирт фитол по своей природе подобен пигменту каротину и является производным насыщенного углеводорода изопрена.

Наличие остатка фитола в хлорофилле придает ему липоидные свойства, которые проявляются в том, что он растворяется в жировых растворителях.

По своему строению порфириновое ядро хлорофилла подобно активным группам некоторых важнейших дыхательных, ферментов: пероксидазе, каталазе, цитохромоксидазе и гемину - красящему веществу крови. В состав этих ферментов и гема крови также входят четыре пирролльных остатка, соединенных в виде порфиринового ядра, в центре которого содержится железо.

Флуоресценция. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Известно, что флуоресценция -- это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света.

Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.

Свойство вещества поглощать свет зависит от его атомного строения и в первую очередь от расположения окружающих ядро электронов. При поглощении фотона, атомом или молекулой энергия фотона воспринимается одним из электронов, и атом или молекула переходят на уровень более богатый энергией, - в возбужденное состояние. Возбудить атом или молекулу могут лишь фотоны определенной длины волны, т. к. процесс возбуждения молекулы имеет не непрерывный, а квантовый характер, т. е. энергия света поглощается определенными порциями, - или квантами, по принципу все или ничего. Возбуждение молекулы светом происходит менее чем 10-15с. Обычно возбужденные молекулы неустойчивы: время их жизни в возбужденном состоянии составляет в среднем 10-9 - 10-8с. Когда действие света прекращается, возбужденная молекула возвращается в начальное состояние с более низким уровнем энергии. Возвращение к основному состоянию сопровождается потерей энергии, которая была поглощена во время возбужденного состояния, она переходит в тепло или излучается в виде света. Излучение света в этом случае называется флуоресценцией. Ослабление флуоресценции хлорофилла в живых тканях, очевидно объясняется поглощением света флуоресценции самими пигментами.

74. Темновая стадия фотосинтеза. Заслуга М. Кальвина.

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Фотосинтез (от греч. цщфп- - свет и уэниеуйт - синтез, совмещение, помещение вместе) - процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахаррибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3- и С4-фотосинтез.

Цикл Кальвина - серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2.

Мемлвин Эмллис Камлвин (англ. Melvin Ellis Calvin; 8 апреля 1911, Сент-Пол, Миннесота, США - 8 января 1997, Беркли, Калифорния, США) - американский биохимик, член Национальной академии наук в Вашингтоне. Иностранный член Лондонского королевского общества, почётный член многих зарубежных академий наук и обществ. Лауреат Нобелевской премии.

С 1940-х гг. работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2(восстановительный карбоновый цикл Кальвина) при фотосинтезе.

Цикл Кальвина или восстановительный пентозофосфатный цикл состоит из трёх стадий:

a) карбоксилирования;

b) восстановления;

c) регенерация акцептора CO2.

На первой стадии к рибулозо-1,5-бифосфату присоединяется CO2 под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа. Этот белок составляет основную фракцию белков хлоропласта и предположительно наиболее распространённый фермент в природе. В результате образуется промежуточное неустойчивое соединение, распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК).

Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат - фосфорилированный углевод (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы. Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН и 18 АТФ.

С4-фотосинтез

При низкой концентрации растворённого в строме CO2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания.

Для увеличения концентрации CO2 растения С4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата, возвращаемого в клетки мезофилла.

С4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

При CAM (англ. Crassulaceae acid metabolism - кислотный метаболизм толстянковых) фотосинтезе происходит разделение ассимиляции CO2 и цикла Кальвинане в пространстве как у С4, а во времени. Ночью в вакуолях клеток по аналогичному вышеописанному механизму при открытых устьицах накапливается малат, днём при закрытых устьицах идёт цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности и С4, и С3. Он оправдан при стресстолерантной жизненной стратегии.

 

92. Суммарные  уравнения химических превращений  при аэробном и анаэробном  дыхании. Интенсивность дыхания, методы  ее определения.

Анаэробная фаза дыхания (гликолиз)

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С6Н12О6->2СзН4О2 + 2H2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилированияшестого углеродного атома за счет взаимодействия с АТФ. Реакция идет в присутствии ионов магния и фермента гексокиназы: глюкоза + АТФ→глюкозо-6-фосфат + АДФ. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментомфосфоглюкоизомеразой: глюкозо-6-фосфат→ фруктозо-6-фосфат. Далее происходит еще одно фосфорилирование при участии АТФ. Фосфорная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой: фруктозо-6-фосфат + АТФ→ фруктозо-1,6-дифосфат +АДФ.

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется собразованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по уравнению:

 

 

Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (H3РО4) и фермента глицеральдегид-3-фосфатдегидрогеназы. 
Молекула этого фермента состоит из четырех идентичных субъединиц. Каждая субъединица представляет одиночную полипептидную цепь приблизительно из 220 аминокислотных остатков. Фермент содержит SH-группы и кофермент НАД, который взаимосвязан с ферментом на всем протяжении процесса. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энергии окисления при участии неорганического фосфата (Н3РО4) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит восстановление кофермента НАД.

В целом реакция выглядит следующим образом:

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой:

 

 

 

         Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:

 

 

 

 

 

 

Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мn2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая   связь.                 Образуетсяфосфоенолпировиноградная кислота (ФЕП):

 

 

 

 

 

 

 

         Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:

 

        Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза следующее:

глюкоза + 2АТФ+ 2НАД+ + 2Фн + 4АДФ→2 пирувата + 4АТФ+ 2НАД.Н2 + 2АДФ.

В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе гликолиза носит название субстратногофосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата. Если считать, что при распаде АТФ на АДФ и Фн выделяется 30,6 кДж, то за период гликолиза накапливается в макроэргических фосфатных связях всего 61,2 кДж. Прямые определения показывают, что распад молекулы глюкозы до пировиноградной кислоты сопровождается выделением 586,6 кДж. Следовательно, энергетическая эффективность гликолиза невелика. Кроме того, образуется 2НАД.Н2. НАДН2 вступает в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты вступают в аэробную фазу дыхания.

Аэробная фаза дыхания

Вторая фаза дыхания — аэробная — локализована в митохондриях и требует присутствия кислорода. В аэробную фазу дыхания вступает пировиноградная кислота. Общее уравнение этого процесса следующее:

Процесс можно разделить на три основные стадии: 1) окислительное декарбоксилирование пировиноградной кислоты; 2) цикл трикарбоновых кислот (цикл Кребса); 3) заключительная стадия окисления — электронно-транспортная цепь (ЭТЦ) требует обязательного присутствия О2. Первые две стадии происходят в матриксе митохондрий, электронно-транспортная цепь локализована на внутренней мембране митохондрий.

Информация о работе Контрольная работа по «Физиология и биохимия растений»