Катализ в процессе переработки и обработки материалов

Автор работы: Пользователь скрыл имя, 22 Марта 2015 в 22:57, реферат

Краткое описание

Катализом называется ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Катализаторами называются вещества, изменяющие скорость химических реакций. Одни катализаторы сильно ускоряют реакцию (положительный катализ, или просто катализ), другие замедляют (отрицательный катализ). Примерами положительного катализа могут служить, например, получение серной кислоты, окисление аммиака в азотную кислоту с помощью платинового катализатора.

Прикрепленные файлы: 1 файл

Катализ.doc

— 182.50 Кб (Скачать документ)

Катализаторы двойного действия существенно ускоряют риформинг нефти. Их используют для изомеризации нормальных парафинов в изопарафины. Последние, кипящие при тех же температурах, что и бензиновые фракции, ценны тем, что обладают более высоким октановым числом по сравнению с неразветвленными углеводородами. Кроме того, превращение н-бутана в изобутан сопровождается дегидрированием, способствуя получению МТБЭ.

Стереоспецифическая полимеризация. Важной вехой в истории катализа явилось открытие каталитической полимеризации α-олефинов с образованием стереорегулярных полимеров. Катализаторы стереоспецифической полимеризации были открыты К. Циглером, когда он пытался объяснить необычные свойства полученных им полимеров. Другой химик, Дж. Натта, предположил, что уникальность полимеров Циглера определяется их стереорегулярностью. Эксперименты по дифракции рентгеновских лучей показали, что полимеры, полученные из пропилена в присутствии катализаторов Циглера, высококристалличны и действительно имеют стереорегулярную структуру. Для описания таких упорядоченных структур Натта ввел термины «изотактический» и «синдиотактический». В том случае, когда упорядоченность отсутствует, используется термин «атактический»:

 

Стереоспецифическая реакция протекает на поверхности твердых катализаторов, содержащих переходные металлы групп IVA–VIII (такие, как Ti, V, Cr, Zr), находящиеся в неполностью окисленном состоянии, и какое-либо соединение, содержащее углерод или водород, который связан с металлом из групп I–III. Классическим примером такого катализатора является осадок, образующийся при взаимодействии TiCl4 и Al(C2H5)3 в гептане, где титан восстановлен до трехвалентного состояния. Эта исключительно активная система катализирует полимеризацию пропилена при обычных температуре и давлении.

Каталитическое окисление. Применение катализаторов для управления химизмом процессов окисления имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще нужно, чтобы окисление было неполным, например во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, содержащие такие функциональные группы, как –СНО, –СООН, –С–СО, –СN. При этом применяются как гомогенные, так и гетерогенные катализаторы. Примером гомогенного катализатора является комплекс переходного металла, который используется для окисления пара-ксилола до терефталевой кислоты, эфиры которой служат основой производства полиэфирных волокон.

Катализаторы гетерогенного окисления. Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление проходит в два этапа. Сначала кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид восстанавливается. Восстановленный оксид взаимодействует с кислородом и возвращается в исходное состояние. Используя ванадиевый катализатор, неполным окислением нафталина или бутана получают фталевый ангидрид.

Получение этилена путем дегидродимеризации метана. Синтез этилена посредством дегидродимеризации позволяет превращать природный газ в более легко транспортируемые углеводороды. Реакцию:

2CH4 + 2O2 → C2H4 + 2H2O,

проводят при 8500 С с использованием различных катализаторов; наилучшие результаты получены с катализатором Li-MgO. Предположительно реакция протекает через образование метильного радикала путем отщепления атома водорода от молекулы метана. Отщепление осуществляется неполностью восстановленным кислородом, например О22–. Метильные радикалы в газовой фазе рекомбинируют с образованием молекулы этана и в ходе последующего дегидрирования превращаются в этилен. Еще один пример неполного окисления – превращение метанола в формальдегид в присутствии серебряного или железомолибденового катализатора.

Цеолиты. Цеолиты составляют особый класс гетерогенных катализаторов. Это алюмосиликаты с упорядоченной сотовой структурой, размер ячеек которой сравним с размером многих органических молекул. Их называют еще молекулярными ситами. Наибольший интерес представляют цеолиты, поры которых образованы кольцами, состоящими из 8–12 ионов кислорода:

 

 

Рис. 1. Структура цеолитов с большими и малыми порами.

Иногда поры перекрываются, как у цеолита ZSМ-5 который используется для высокоспецифичного превращения метанола в углеводороды бензиновой фракции.

 

Рис. 2. Цеолит ZSM-5. Схематическое представление структуры в виде пересекающихся трубок.

Бензин содержит в значительных количествах ароматические углеводороды и поэтому имеет высокое октановое число. В Новой Зеландии, например, с помощью этой технологии получают треть всего потребляемого бензина. Метанол же получают из импортируемого метана.

Катализаторы, составляющие группу Y-цеолитов, существенно повышают эффективность каталитического крекинга благодаря в первую очередь своим необычным кислотным свойствам. Замена алюмосиликатов цеолитами позволяет увеличить выход бензина более чем на 20%. Кроме того, цеолиты обладают селективностью в отношении размера реагирующих молекул. Их селективность обусловлена размером пор, через которые могут проходить молекулы лишь определенных размеров и формы. Это касается как исходных веществ, так и продуктов реакции.

Применение цеолитов произвело настоящую революцию в некоторых промышленных технологиях – депарафинизации газойля и машинного масла, получении химических полупродуктов для производства пластмасс алкилированием ароматических соединений, изомеризации ксилола, диспропорционировании толуола и каталитическом крекинге нефти. Особенно эффективен здесь цеолит ZSM-5.

Ферменты.

Ферменты – это природные катализаторы, регулирующие биохимические процессы в живой клетке. Они участвуют в процессах энергообмена, расщеплении питательных веществ, реакциях биосинтеза. Без них не могут протекать многие сложные органические реакции. Ферменты функционируют при обычных температуре и давлении. Они обладают очень высокой селективностью и способны увеличивать скорость реакций на восемь порядков. Несмотря на эти преимущества, лишь около 20 из 15 000 известных ферментов применяются в широких масштабах.

 

Человек тысячелетиями использовал ферменты при выпечке хлеба, получении алкогольных напитков, сыра и уксуса. Сейчас ферменты применяются и в промышленности: при переработке сахара, получении синтетических антибиотиков, аминокислот и белков. Протеолитические ферменты, ускоряющие процессы гидролиза, добавляют в детергенты.

С помощью бактерий Clostridium acetobutylicum Х. Вейцман осуществил ферментативное превращение крахмала в ацетон и бутиловый спирт. Этот способ получения ацетона широко использовался в Англии во время Первой мировой войны, а во время Второй мировой войны с его помощью в СССР изготавливали бутадиеновый каучук.

Исключительно большую роль сыграло применение ферментов, продуцируемых микроорганизмами, для синтеза пенициллина, а также стрептомицина и витамина B12.

Этиловый спирт, получаемый ферментативным путем, широко используют в качестве автомобильного топлива. В Бразилии более трети из примерно 10 млн. автомобилей работают на 96%-ном этиловом спирте, получаемом из сахарного тростника, а остальные – на смеси бензина и этилового спирта (20%). Хорошо отработана технология производства топлива, представляющего собой смесь бензина и спирта, в США. В 1987 из зерен кукурузы было получено ок. 4 млрд. л спирта, из них примерно 3,2 млрд. л было использовано в качестве топлива. Разнообразное применение находят и т.н. иммобилизованные ферменты. Эти ферменты связаны с твердым носителем, например силикагелем, над которым пропускают реагенты. Преимущество этого метода состоит в том, что он обеспечивает эффективное контактирование субстратов с ферментом, разделение продуктов и сохранение фермента. Один из примеров промышленного использования иммобилизованных ферментов – изомеризация D-глюкозы во фруктозу.

Недавно разработано новое поколение инициаторов, способствующих образованию биоразлагаемых полимеров в отсутствии растворителя. Исследователи из Великобритании заявляют, что новые катализаторы эффективнее ускоряют скорость реакции и лучше контролируют свойства полимера. Группа Мэтью Дэвидсона (Matthew Davidson) из Университета Бата разработали производные на основе алкоголятов циркония и гафния, проявляющие высокую активность и селективность в получении полилактидов. В отличии от других инициаторов, разработанных в последнее десятилетие, эти координационные соединения функционируют не только в разбавленных растворах, но и позволяют получать стереорегулярные полимеры при полном отсутствии растворителя. Биоразлагаемые полилактиды получают из возобновляемых сырьевых источников, как, например, из кукурузного крахмала, что делает эти полимеры привлекательной альтернативой полимеров, получающихся из нефтехимического сырья.

Область применения полилактидов широка – от упаковочных материалов до хирургических нитей и имплантатов. Ведущий специалист по катализаторам полимеризации из Университета Огайо Малькольм Чизхольм (Malcolm Chisholm) отмечает, что полимеризация в расплаве особенно интересна для промышленного получения полимеров, а стереоселективная полимеризация представляет еще больший интерес. По его словам до настоящего времени ни один катализатор не мог обеспечить осуществление стереоселективной полимеризации в расплаве. Дэвидсон собирается заняться разработкой новых типов металлоорганических катализаторов полимеризации для других биоразлагаемых полимеров. Он полагает, что для большей эффективности работы необходимо уточнение механизма процесса катализа стереоселективной полимеризации, для чего планирует сотрудничать со специалистами в области квантовой химии, а также провести детальные кинетические исследования.

Современные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650° С и давлениях 100 атм. и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля технологических процессов.

В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим – увеличение производства пищевых продуктов, поскольку аммиак – ценное удобрение.

Методы.

Исследования в области катализа проводят с использованием как традиционных, так и специальных методов. Применяются радиоактивные метки, рентгеновская, инфракрасная и рамановская (КР) спектроскопия, электронно-микроскопические методы; проводятся кинетические измерения, изучается влияние способов получения катализаторов на их активность. Большое значение имеет определение площади поверхности катализатора по методу Брунауэра – Эммета – Теллера (метод БЭТ), основанному на измерении физической адсорбции азота при разных давлениях. Для этого определяют количество азота, необходимого для образования монослоя на поверхности катализатора, и, зная диаметр молекулы N2, вычисляют суммарную площадь. Помимо определения общей площади поверхности проводят хемосорбцию разных молекул, что позволяет оценить число активных центров и получить информацию об их свойствах.

В распоряжении исследователей имеются разные методы изучения структуры поверхности катализаторов на атомном уровне. Уникальную информацию позволяет получить метод EXAFS. Среди спектроскопических методов все шире применяются УФ-, рентгеновская и оже-фотоэлектронная спектроскопия. Большой интерес представляет масс-спектрометрия вторичных ионов и спектроскопия ионного рассеяния. Для исследования природы каталитических комплексов применяются измерения ЯМР. Сканирующий туннельный микроскоп позволяет увидеть расположение атомов на поверхности катализатора.

Перспективы

Масштабы каталитических процессов в промышленности увеличиваются с каждым годом. Все более широкое применение находят катализаторы для нейтрализации веществ, загрязняющих окружающую среду. Возрастает роль катализаторов в производстве углеводородов и кислородсодержащих синтетических топлив из газа и угля. Весьма перспективным представляется создание топливных элементов для экономичного преобразования энергии топлива в электрическую энергию.

Новые концепции катализа позволят получать полимерные материалы и другие продукты, обладающие многими ценными свойствами, усовершенствовать методы получения энергии, увеличить производство пищевых продуктов, в частности путем синтеза белков из алканов и аммиака с помощью микроорганизмов. Возможно, удастся разработать генно-инженерные способы получения ферментов и металлоорганических соединений, приближающихся по своей каталитической активности и селективности к природным биологическим катализаторам.

 

 

Список использованной литературы

  1. Зубков Б.В., Чумаков С.В. Энциклопедический словарь юного техника. М.: Педагогика, 1980
  2. Афанасьев В.А., Г.Е. Заиков. В мире катализа. М.: Наука, 1977
  3. Берковский А.Г., Гаванин В.А. Каталитический синтез углеродных материалов и их применение в катализе. М.: Наука, 1976
  4. Большая химическая энциклопедия. Т.2. М.: Советская энциклопедия, 1990
  5. Боресков Г.К. Катализ. Избранные труды. Новосибирск: Наука, 1987
  6. Боресков Г.К. Некоторые проблемы катализа. М.: Знание, 1981
  7. Волков В.А., Вонский Е.В., Кузнецов В.И. Выдающиеся химики мира. Биографический справочник. М.: Высшая школа, 1991
  8. Востронов Г.А., Розанов Л.Н. В мире катализа. Л.: Машиностроение, 1977
  9. Ганкин В.Ю. Новая общая теория химической связи, кинетики и катализа. Л.:Химия, 1991
  10. Гейтс Б., Кетцир Дж., Шуйт Г. Химия каталитических процессов. М.: Мир, 1981
  11. Дженкс В. Катализ в химии и энзимологии. М.: Мир, 1972
  12. Коллмен Дж., Хигедас Л., Нортон Дж., Финке Р. Металлоорганическая химия переходных металлов. М.: Мир, 1989
  13. Коттон Ф.А., Уилкинсон Дж. Современная неорганическая химия. М.: Мир, 1969
  14. Коттон Ф.А., Уолтон Р. Кратные связи металл-металл. М.: Мир, 1985
  15. Кузнецов Б.Н. Катализ химических превращений угля и биомассы. Новосибирск: Наука, 1990
  16. Кузнецов Б.Н. Органический катализ. Часть 2. Катализ в процессах химической переработки угля и биомассы.: Учебн. пособие. Красноярск: Изд-во Красноярского Университета, 1988
  17. Кузнецов В.И. Развитие учения о катализе. М.: Высшая школа, 1964
  18. Моисеев И.И. Комплексы в жидкофазном окислении олефинов. М.: Наука, 1970
  19. Моисеев И.И., Варгафтик М.Н. Успехи химии. М.: Наука, 1990
  20. Ройтер В.А. Каталитические свойства веществ: Справочник. Киев: Наукова думка, 1975
  21. Танабе К. Твердые кислоты и основания. М.: Мир, 1973
  22. Темкин О.Н., Шестаков Г.К., Трегер Ю.А. Ацетилен. Химия. Механизмы реакций. Технология. М.: Химия, 1991
  23. Трофимова Т.И. Курс физики: Учеб. Пособие для вузов. - 2-е изд. Перераб. и доп. М.: Высшая школа, 1990
  24. Уилсон К.Л. Уголь - мост в будущее. М.: Недра, 1985

Информация о работе Катализ в процессе переработки и обработки материалов