Аэробное дыхание

Автор работы: Пользователь скрыл имя, 14 Января 2014 в 00:37, реферат

Краткое описание

В цикл Кребса включается одна молекула ацетил-КоА, которая в реакции с оксалоацетатом, катализируемой цитратсинтетазой, приводит к образованию лимонной кислоты и свободного коэнзима А. Лимонная кислота с помощью фермента аконитазы превращается в цис-акотиновую и изолимонную кислоты. Изолимонная кислота через щавелевоянтарную кислоту превращается в α-кетоглутаровую кислоту, которая подвергается дальнейшему декарбоксилированию.

Содержание

1. Понятие «аэробное дыхание», цикл Кребса.
2. Понятие о механизме окислительного фосфорилирования
3. Компоненты дыхательной цепи
4. Синтез молекул АТФ в дыхательной цепи бактерий и дрожжей.

Прикрепленные файлы: 1 файл

Тема - Аэробное дыхание.doc

— 325.50 Кб (Скачать документ)

Тема «Аэробное  дыхание» 

 

1. Понятие «аэробное дыхание», цикл Кребса.

2. Понятие о механизме окислительного фосфорилирования

3. Компоненты дыхательной цепи

4. Синтез молекул  АТФ в дыхательной цепи бактерий  и дрожжей.

 

 

 

            1. Аэробное дыхание, цикл Кребса.

 

Аэробное  дыхание – это основной процесс энергетического метаболизма многих прокариот, при котором донором водорода или электронов являются органические (реже неорганические) вещества, а конечным акцептором – молекулярный кислород. Основное количество энергии при аэробном дыхании образуется в электронтранспортной цепи, т. е. в результате мембранного фосфорилирования.

Рассмотрим  схему аэробного дыхания (рис. 1).

 

 

Рис. 1. Схема аэробного  дыхания

Пировиноградная кислота, образующаяся в одном из трех путей катаболизма глюкозы, окисляется с участием коэнзима А до ацетил-КоА. В данном процессе работают ферменты пируватдегидрогеназы:

 

СН3-СО-СООН + КоА-SН + НАД+  → СН3-СО~КоА + НАД · Н2 + СО2

 

Ацетил-КоА является исходным субстратом цикла Кребса (ЦТК).

В цикл Кребса включается одна молекула ацетил-КоА, которая в реакции с оксалоацетатом, катализируемой цитратсинтетазой, приводит к образованию лимонной кислоты и свободного коэнзима А. Лимонная кислота с помощью фермента аконитазы превращается в цис-акотиновую и изолимонную кислоты. Изолимонная кислота через щавелевоянтарную кислоту превращается в α-кетоглутаровую кислоту, которая подвергается дальнейшему декарбоксилированию.

В конечном итоге, окисление ацетил-КоА  в ЦТК приводит  к образованию (рис. 2):

- двух молекул СО2;

- одной молекулы  АТФ;

- восьми атомов  водорода, из которых шесть атомов  связаны в молекулах пиридиннуклеотидов и два атома – в молекулах флавопротеинов.

Таким образом, ЦТК можно рассматривать как выработанный клеткой механизм, имеющий двоякое назначение:

1) Основная функция  его заключается в том, что  это - совершенный клеточный «котел», в котором осуществляется полное окисление вовлекаемого в него органического субстрата и отщепление водорода.

2) Другая функция  цикла – обеспечивает биосинтетические процессы клетки различными предшественниками, такими как оксалоацетат, сукцинат, α-кетоглутарат и др. Отсутствие этих кислот привело бы к нехватке оксалоацетата, который служит акцептором для ацетил-СоА и, тем самым,  к


Рис. 2 Цикл Кребса

 

 

 

 

нарушению цикла. Обычно ЦТК является дальнейшей «надстройкой» над анаэробными энергетическими механизмами клетки.

У некоторых  бактерий ЦТК «разорван». Наиболее часто отсутствует этап превращения α-кетоглутаровой кислоты в янтарную. В таком виде ЦТК не может функционировать в системе энергодающих реакций клетки. Основная функция «разорванного» ЦТК – биосинтетическая.

Образовавшиеся  на разных этапах окисления органических веществ восстановительные эквиваленты  НАД · Н2  и ФАД · Н2  поступают в дыхательную цепь, которая у бактерий находится в цитоплазматической мембране, а у эукариот – в мембране митохондрий. В дыхательной цепи НАД · Н2 и ФАД · Н2  вновь окисляются до НАД и ФАД, а отщепившийся от них водород передается не менее чем через пять переносчиков на заключительный участок цепи, где соединяется с молекулярным кислородом, образуя воду (рис. 1).

 

 

 

2. Понятие о механизме окислительного фосфорилирования

 

Транспорт водорода с участием компонентов дыхательной  цепи сопровождается протеканием ряда окислительно-восстановительных реакций. В некоторых из них выделяется достаточно энергии для образования АТФ и такой процесс носит название окислительного фосфорилирования.

Аэробные прокариоты обладают особым аппаратом: дыхательной (электрон-транспортной) цепью и ферментом ATФ-синтазой; обе системы у прокариот находятся в плазматической мембране, а у эукариот - во внутренней мембране митохондрий. Ведущие свое происхождение от субстратов восстановительные эквиваленты (Н+ или электроны) в этих мембранах поступают в дыхательную цепь, и электроны переносятся на 02 (или другие терминальные акцепторы электронов). В дыхательной цепи происходят реакции, представляющие собой биохимический аналог сгорания водорода. От химического горения молекулярного водорода они отличаются тем, что значительная часть свободной энергии переводится при этом в биологически доступную форму, т. е. в АТФ, и лишь небольшая доля рассеивается в виде тепла.

Рис. 3 Схема окислительного фосфорилирования в плазматической мембране бактериальной клетки и  во внутренней мембране митохондрий: А  – окисление НАДН2 и выведение протонов. Б – электрохимический градиент между внутренней и наружной сторонами. В - Регенерация АТФ как следствие обратного тока протонов.

 

Механизм окислительного фосфорилирования. Отданные субстратами восстановительные эквиваленты (протоны и электроны) переносятся на плазматическую мембрану бактерий или на внутреннюю мембрану митохондрий эукариот. Через мембрану они транспортируются таким образом, что между внутренней и внешней стороной мембраны создается электрохимический градиент с положительным потенциалом снаружи и отрицательным внутри. Этот перепад заряда возникает благодаря определенному расположению компонентов дыхательной цепи в мембране (рис. 3).

Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что  при транспорте электронов от субстрата  к кислороду протоны (Н+) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют «протонным насосом», так как главная функция этой системы – перекачивание протонов.

Неравновесное распределение зарядов, т.е. электрохимический  градиент, служит движущей силой для процесса регенерации АТФ (и других процессов, требующих затраты энергии). Мембрана содержит специальный фермент АТФ-синтазу, который катализирует превращение АТФ из АДФ и фосфорной кислоты. Этот фермент поступает из мембраны с ее внутренней стороны. А в процессе синтеза АТФ протоны переходят обратно с наружной стороны мембраны на внутреннюю. Синтез АТФ за счет энергии транспорта электронов через мембрану называют окислительным фосфорилированием в дыхательной цепи.

Для того чтобы  понять механизм аэробного дыхания, необходимо знать: 1) компоненты дыхательной цепи, 2) их окислительно-восстановительные потенциалы, 3) их взаиморасположение в мембране.

 

 

3. Компоненты дыхательной цепи

 

Компонентами дыхательной цепи являются ферментные белки с относительно прочно связанными низкомолекулярными простетическими группами. Такие комплексы у эукариот локализуются во внутренней стороне мембраны митохондрий, а у прокариот – в плазматической мембране. Механизм действия и локализация компонентов дыхательной цепи в тех и других мембранах во многом сходны.

Компоненты  дыхательной цепи погружены в двойной липидный слой. Речь идет о большом числе ферментов, коферментов и простетических групп, различных дегидрогеназ и транспортных систем, участвующих в переносе электронов и водорода. Белковые компоненты могут быть выделены из мембраны. Дыхательные цепи микроорганизмов состоят из следующих важнейших, локализованных в мембране, переносчиков атомов водорода или электронов: флавопротеинов, железосерных белков, хинонов и цитохромов.

Флавопротеины – коферменты, в состав которых входит витамин В2, а в качестве простетических групп в них выступают флавинмононуклеотид (ФМН) или флавинадениндинуклеотид (ФАД).

Флавопротеины осуществляют перенос атомов водорода, т. е. являются дегидрогеназами. Дегидрогеназа, которая содержит в качестве простетической группы ФМН, является НАДФ · Н2-дегидрогеназой. Это стартовый переносчик в дыхательной цепи, осуществляющий перенос водорода с НАДФ · Н2 на следующие компоненты дыхательной цепи. Дегидрогеназа, содержащаяся в качестве простетической группы ФАД, действует как сукцинатдегидрогеназа. Она катализирует окисление янтарной кислоты в фумаровую в ЦТК. Атомы водорода от ФАД · Н2  поступают сразу на хиноны, локализованные на последних этапах электронтранспортной цепи.

 

Железосерные белки (FeS-белки) содержат железосероцентры, в которых атомы железа связаны, с одной стороны, с серой аминокислоты цистеина, а с другой – с неорганической сульфидной серой (рис. 4).

Железосероцентры входят в состав некоторых флавопротеинов (например, сукцинатдегидрогеназы и НАДФ · Н2-дегидрогеназы), или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат большое число FeS-центров. Железосероцентры, в зависимости от строения, могут осуществлять одновременный перенос одного или двух электронов, что связано с изменением валентности атомов железа.


 

Рис. 4. Железосероцентры (FeS-центры) белков

 

Хиноны – жирорастворимые соединения. У грамотрицательных бактерий они представлены убихиноном (кофермент Q) или менахиноном (рис. 5).

Рис. 5. Хиноны грамотрицательных бактерий: А – кофермент Q (убихинон); Б – менахинон

 

Хиноны липофильны  и поэтому локализуются в липидной фазе мембраны. Они переносят атомы водорода. По сравнению с другими компонентами дыхательной цепи, хиноны содержатся в 10–15-кратном избытке. Они служат «сборщиками» водорода, поставляемого различными коферментами и простетическими группами в дыхательной цепи, и передают его цитохромам. Таким образом, они функционируют в дыхательной цепи на участке между флавопротеинами и цитохромами.

Цитохромы принимают участие на заключительном этапе в цепи переноса электронов. К ним электроны поступают от хинонов. В качестве простетической группы цитохромы содержат гем. Цитохромы окрашены; они отличаются друг от друга спектрами поглощения и окислительно-восстановительными потенциалами. Различают цитохромы а, а3, b, c, o и ряд других. Наиболее широко распространен цитохром с. Он найден почти у всех организмов, обладающих дыхательной цепью. Конечные (терминальные) цитохромы дыхательной цепи – это цитохромы а + а3 или цитохромоксидаза. Они передают электроны на молекулярный кислород, т. е. катализируют восстановление молекулярного кислорода до воды. В реакционном центре цитохромоксидазы, помимо двух гемов, содержатся два атома меди.

Дыхательная цепь имеет следующие особенности:

1) Одни ее компоненты переносят только атомы водорода, а другие – только электроны.

2) Переносчики атомов водорода и переносчики электронов последовательно чередуются в дыхательной цепи. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы – электронов.

3) В составе  дыхательных цепей у микроорганизмов  выявлены определенные различия.

 

4. Синтез  молекул АТФ в дыхательной  цепи бактерий и дрожжей

В качестве примера  сравним дыхательные цепи в митохондриях дрожжей (рис. 6) и у бактерий E. coli (рис. 7).

Из рис. 6 видно, что митохондриальная дыхательная цепь у дрожжей содержит четыре комплекса:

• комплекс 1 – НАД · Н2-дегидрогеназа; в него входят ФМН и железосерные белки; НАД · Н2-дегидрогеназа переносит водород от НАД · Н2 к коферменту Q;

• комплекс 2 – сукцинатдегидрогеназа, содержащая ФАД. Она отдает водород в дыхательную цепь на уровне кофермента Q;

• комплекс 3 – цитохром b и цитохром с1, принимающие электроны от кофермента Q и передающие их на цитохром с;

• комплекс 4 –цитохромоксидаза, осуществляющая перенос электронов на молекулярный кислород.

 


Рис. 6. Компоненты дыхательной цепи митохондрий у дрожжей: цит. - цитохром


Рис. 7. Компоненты дыхательной цепи бактерий E. сoli: А – путь при росте в аэробных условиях; В – путь при росте с ограниченным снабжением кислородом

 

Дыхательная цепь бактерий E. coli по своему составу отличается от дыхательной цепи митохондрий дрожжей (рис. 7):

- в нее не  входит цитохром с;

- дыхательная  цепь у E. coli разветвлена.

В клетках, растущих в условиях достаточной аэрации, восстановительные эквиваленты передаются к кислороду преимущественно через кофермент Q, цитохром b556 и цитохром о. При ограниченном снабжении кислородом клетки используют в качестве переносчиков электронов менахинон или убихинон и цитохромы b558 и d. В последнем случае образуется меньшее количество АТФ.

Синтез молекул  АТФ. Установлено, что в дыхательной цепи митохондрий дрожжей существуют три пункта фосфорилирования, которые соответствуют участкам выхода протонов во внешнюю среду. Первый участок локализован в начале дыхательной цепи и связан с функционированием НАДФ · Н2-дегидрогеназы. Второй определяется способностью убихинона переносить водород. Последний локализован в конце дыхательной цепи и связан с активностью цитохромоксидазы. Если роль донора водорода выполняет ФАД · Н2 , то возможны только два пункта фосфорилирования, так как при этом выпадает участок дыхательной цепи, где располагается НАДФ · Н2-дегидрогеназа (рис. 8).

Как видно из рис. 8, связывание протонов происходит на внутренней стороне мембраны, а их освобождение – на наружной. Так как внутренняя мембрана митохондрий и цитоплазматическая мембрана бактерий непроницаемы для ионов, в том числе и для Н+ и ОН-, то создается трансмембранный электрохимический, или протонный градиент между наружной и внутренней их сторонами. Протоны могут обратно поступать через мембрану только в определенных местах. В некоторых из них располагаются специфические белки – АТФ-синтазы. В процессе переноса протонов через мембрану АТФ-синтаза катализирует присоединение фосфата к АДФ с отщеплением воды, в результате образуется АТФ. Однако, в настоящее время пока в деталях не ясно, каким образом энергия трансмембранного электрохимического градиента используется в реакциях фосфорилирования.

Информация о работе Аэробное дыхание