Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин

Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:36, курсовая работа

Краткое описание

В процессе эксплуатации газовых скважин на поздней стадии разработки месторождений возникают осложнения, вызванные скоплениями воды. В результате снижаются рабочие дебиты скважин. Работа скважин становится невозможной без проведения мероприятий по удалению воды. Анализ эксплуатации фонда скважин крупнейших месторождений России показал, что количество скважин, в которых отмечается присутствие только конденсационной воды в 5 раз больше, чем скважин, в которых отмечен приток пластовой минерализованной воды. Вода, скопившаяся в стволе скважины, оказывает дополнительное гидравлическое давление на забой. В результате приток газа из продуктивного пласта ограничивается, дебит газа уменьшается, а скважина, при определенных значениях давления на устье и скоплении воды в лифтовой колонне, периодически самозадавливается, прекращает подачу газа в газосборный трубопровод.

Содержание

1.1. Основные понятия 2

1.2.Механизм использования пластовой энергии при добыче нефти 10

1.3.Источники и характеристики пластовой энергии 12

1.4.Режимы работы пласта 15

1.4.1. Водонапорный режим 17

1.4.2. Упруго-водонапорный режим 21

1.4.3. Газонапорный режим 24

1.4.4. Режим растворенного газа 29

1.4.5. Гравитационный режим 31

1.5.Геологические условия проявления режима пластов 33

1.6 ЛИТЕРАТУРА. 36

Прикрепленные файлы: 1 файл

Курсовая Диман 1.docx

— 269.54 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 1.2.Механизм использования пластовой энергии при добыче нефти

  • Жидкость из пласта в скважину поступает под действием перепада давления между пластом и забоем скважины. Поэтому пластовое давление - основной фактор, определяющий текущее энергетическое состояние залежи. Точнее, следует говорить не об абсолютной величине этого параметра, а об его соотношении с нормальным пластовым давлением на глубине залегания данной залежи, которое равно давлению столба воды равной высоты. Различают залежи, у которых начальное пластовое давление превышает эту величину (аномально-высокое пластовое давление - АВПД) и залежи с более низким начальным давлением (аномально низкое пластовое давление - АНПД).

    Аномалии начального пластового давления определяются различными причинами, в основном геологического характера. Анализ данных по большому числу нефтяных месторождений тяжелых нефтей показал, что существует корреляционная зависимость между удельным весом (содержанием тяжелых компонентов в нефти) и коэффициентом аномально высокого пластового давления, который равен отношению АВПД в залежи к нормальному пластовому давлению на соответствующей глубине. Именно, с ростом удельного веса нефти наблюдается тенденция к увеличению коэффициента аномальности. Таким образом, по составу нефти, определяемому по устьевым замерам, можно оценивать АВПД в залежи.

    Другая причина проявления аномального пластового давления может быть обусловлена особенностями гидростатики разноплотных жидкостей. Пусть, например, кровля нефтяного пласта находится на глубине 1000 м, водонефтяной контакт -  на глубине 2000 м, а нижняя граница водной области - на глубине 3000 м. Так как давление в пластах распределяется по гидростатическому закону в соответствии с удельным весом воды, то на глубине 3000 м пластовое давление равно примерно 30 МПа, на отметке водонефтяного контакта - 20 МПа. Если принять удельный вес нефти 800 кг/м3, то на кровле нефтяного пласта давление будет равно 20 - 8 = 12 МПа, в то время как нормальное пластовое давление на этой глубине равно 10 МПа, т. е. коэффициент аномальности равен 1,2. При наличии газовой шапки этот эффект будет существенный. Можно решать и обратную задачу - по определенному распределению давления по глубине оценивать положение водонефтяного контакта.

    Различают два типа источников пластовой энергии - естественные и искусственные. К естественным источникам относятся упругость пластовой системы, напор пластовых вод, наличие свободного газа (в виде газовой шапки), энергия растворенного газа, напор обусловленный силой тяжести. Пластовую энергию можно поддерживать искусственным способом - закачкой в пласт воды, пара или газа. В зависимости от того, какой источник пластовой энергии преобладает, формируется определенный режим разработки. Рассмотрим последовательно каждый из этих режимов.

    В начальном состоянии пластовая система, под которой понимается вмещающий коллектор, нефтяная часть и контактирующий с ней водоносный бассейн, находится в сжатом состоянии, определяемом начальным пластовым давлением. Отбор нефти из залежи приводит к снижению там давления, в результате чего происходит расширение частиц породы, нефти и воды. А это, в свою очередь, уменьшает падение пластового давления. Таким образом, в процессе разработки начальная упругая энергия сжатия пластовой системы уменьшается. Метод разработки нефтяного месторождения, основанный на использовании запаса упругой энергии пластовой системы, называется разработкой на естественном режиме.

     

     

     

     

     

     

     

  • 1.3.Источники и характеристики пластовой энергии

  • Энергия — это физическая величина, определяющая способность тел совершать работу. Работа, применительно к нефтедобыче, представляется как разность энергий или освободившаяся энергия, необходимая для перемещения нефти в пласте и дальше на поверхность. Различаем естественную и в случае ввода извне, с поверхности искусственную пластовые энергии. Они выражаются в виде потенциальной энергии как энергии положения и энергии упругой деформации.

    Потенциальная энергия положения:

                                                        (2.5)

    где — масса тела (пластовой или закачиваемой с поверхности воды, нефти, свободного газа); — ускорение свободного падения; — высота, на которую поднято тело по сравнению с произвольно выбранной плоскостью начала отсчета (для жидких тел это гидростатический напор).

    Поскольку масса тела , , то энергия положения равна произведению объема тела на создаваемое давление :

                                                        (2.6)

    где — плотность тела. То есть, чем больше масса тела и высота его положения (напор) или объем тела и создаваемое им давление, тем больше потенциальная энергия положения.

    Потенциальная энергия упругой деформации:

                                                          (2.7)

    где — сила, равная произведению давления на площадь ; — линейная деформация (расширение).

    Так как приращение объема , то

                                                                            (2.8)

    Приращение объема при упругой деформации можно представить, исходя из закона Гука, через объемный коэффициент упругости среды:

                                                                                     (2.9)

    то

                                                                      (2.10)

    Следовательно, чем больше упругость и объем V среды (воды, нефти, газа, породы), давление и возможное снижение давления ∆P, тем больше потенциальная энергия упругой деформации. Количество пластовой воды и свободного газа определяется соответственно размерами водоносной области и газовой шапки, а количество растворенного в нефти газа — объемом нефти Vн и давлением Pн насыщения нефти газом (по закону Генри) или газосодержанием (газонасыщенностью) пластовой нефти Г0 (объемное количество растворенного газа, измеренного в стандартных условиях, которое содержится в единице объема пластовой нефти):

                                           (2.11)

    где α р — коэффициент растворимости газа в нефти.

    Отсюда следует, что основными источниками пластовой энергии служат:       

    • энергия напора (положения) пластовой воды (контурной, подошвенной);       
    • энергия расширения свободного газа (газа газовой шапки);     
    • энергия расширения растворенного в нефти газа;     
    • энергия упругости (упругой деформации) жидкости (воды, нефти) и породы;      
    • энергия напора (положения) нефти.

    Энергии этих видов могут проявляться в залежи совместно, а энергия упругости нефти, воды, породы наблюдается всегда. В нефтегазовых залежах в присводовой части активную роль играет энергия газовой шапки, а в приконтурных зонах — энергия напора или упругости пластовой воды. В зависимости от темпа отбора нефти добывающие скважины, расположенные вблизи внешнего контура нефтеносности, могут создавать такой экранирующий эффект, при котором в центре залежи действует в основном энергия расширения растворенного газа, а на периферии — энергия напора или упругости пластовой воды и т.д.

    Эффективность расходования пластовой энергии, т.е. количество получаемой нефти на единицу уменьшения ее величины, зависит от вида и начальных запасов энергии, способов и темпа отбора нефти.

    На основании изложенного можно сказать, что значение пластовой энергии зависит от давления, упругости жидкости (нефти, воды) и породы, газосодержания, объемов воды и газа, связанных с нефтяной залежью. Искусственная энергия вводится в пласт при закачке в нагнетательные скважины воды, газа, пара и различных растворов.

    Пластовая энергия расходуется на преодоление разного рода сил сопротивления, гравитационных, капиллярных сил при перемещении нефти и проявляется в процессе снижения давления, создания депрессии на пласт-коллектор (разности между пластовым и забойным давлениями).

     

     

     

     

     

     

  • 1.4.Режимы работы пласта

  • Фильтрация жидкости по пласту к забоям скважин  -  к точкам наиболее низкого давления осуществляется за счет пластовой энергии. Жидкость под действием пластового давления находится в сжатом состоянии. В процессе эксплуатации месторождения, как правило, пластовое давление падает. Поэтому важно извлечь запасы нефти из пласта, до того как давление снизится и станет невозможно поддерживать необходимые депрессии.

    За изменением пластового давления постоянно следят и при быстром его снижении применяют искусственные методы воздействия на залежь и, в частности, методы поддержания пластового давления. Темп снижения пластового давления, характеризующего энергетические ресурсы пласта, зависит от темпа отбора пластовой жидкости: нефти, воды и газа, который обусловлен проектом разработки месторождения, и от того осуществляется или нет поддержание пластового давления. Это искусственные факторы. С другой стороны, запас пластовой энергии, величина начального пластового давления и темп его снижения зависят и от природных - естественных факторов:     

    • наличия газовой шапки, энергия расширения которой используется при разработке месторождения;     
    • запаса упругой энергии в пластовой системе;     
    • содержания растворенного в нефти газа, энергия расширения которого приводит к перемещению пластовых жидкостей и газов к забоям скважин;
    •      наличия источника регулярного питания объекта разработки пластовой законтурной водой и интенсивность замещения этой водой извлекаемой из пласта нефти;    
    • гравитационного фактора, который эффективно может способствовать вытеснению нефти в пластах с большими углами падения.

    Перечисленные факторы, определяющиеся природными условиями, связаны с процессом формирования месторождения и не зависят от технолога. Одни из этих факторов могут иметь определяющую роль в процессах разработки, другие подчиненную роль.

    Капиллярно-поверхностные силы особенно существенны в пористых средах с большой удельной поверхностью способствуют, а чаще тормозят фильтрацию пластовой жидкости и поэтому в совокупности с перечисленными факторами определяют интенсивность притока жидкости к забоям скважин.

    Совокупность всех естественных и искусственных факторов, определяющих процессы, проявляющиеся в пористом пласте при его дренировании системой эксплуатационных и нагнетательных скважин, принято называть режимом пласта. Выделяют пять режимов:       

    • водонапорный (естественный и искусственный)      
    • упруго-водонапорный      
    • газонапорный (режим газовой шапки)     
    • режим растворенного газа      
    • гравитационный.

    От правильной оценки режима дренирования зависят технологические нормы отбора жидкости из скважин, предельно допустимые динамические забойные давления, выбор расчетно-математического аппарата для прогнозирования гидродинамических показателей разработки, определения объемов добычи жидкости и газа, расчета процесса обводнения скважин, а также и тех мероприятий по воздействию на залежь, которые необходимы при разработке для достижения максимально возможного конечного коэффициента нефтеотдачи.

    Однако определить режим залежи не всегда просто, так как в ряде случаев многие факторы, определяющие режим, проявляются одновременно.

    Рассмотрим идеализированные условия, когда тот или иной режим проявляется в «чистом виде», т. е. когда изменения в залежи в процессе ее разработки обусловлены действием только одного режима, а проявление других режимов либо отсутствует вовсе, либо столь незначительно, что им возможно пренебречь

    1.4.1. Водонапорный режим

    При этом режиме фильтрация нефти происходит под действием давления краевых или законтурных вод, имеющих регулярное питание (пополнение) с поверхности за счет талых или дождевых вод или за счет непрерывной закачки воды через систему нагнетательных скважин.

    Условие существования водонапорного режима

    ,

    где Pпл - среднее пластовое давление, Pнас - давление насыщения.

    При этом условии свободного газа в пласте нет и фильтруется только нефть или нефть с водой. Проницаемый пласт 2 (рис.2.4) обеспечивает гидродинамическую связь области отбора нефти 1 с областью питания 3, которой может служить естественный водоем - русло реки. В результате процессов складкообразования пористый и проницаемый пласты могут получить выход на дневную поверхность в районе, например, речного русла 3, из которого происходит непрерывная подпитка пласта водой при отборе нефти через скважины 4. Пласт-коллектор должен иметь достаточную проницаемость на всем протяжении от залежи до мест поглощения поверхностных вод. Это и обусловливает активность законтурной воды.

    Информация о работе Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин