Последовательность выделения минералов из магматического расплава. Реакционные ряды Боуэна

Автор работы: Пользователь скрыл имя, 26 Марта 2014 в 08:45, контрольная работа

Краткое описание

Существует ряд признаков, позволяющих выяснить последовательность кристаллизации минералов из расплава. Прежде всего, обращают внимание на форму минералов и степень их идиоморфизма. Ранние минералы могут быть огранены лучше, чем поздние. Степень кристаллической огранки минералов в породах различна.

Содержание

Оглавление
1.Последовательность выделения минералов из магматического расплава. Реакционные ряды Боуэна 2
1.1.Последовательность кристаллизации минералов из раслпава.. 2
1.2.Влияние летучих компонентов на кристаллизацию магмы………………..3
1.3. Закономерности парагенетических ассоциаций и последовательность выделения минералов 4
1.4.Реакционный ряд Н. Л. Боуэна…………………………………………….5
2.Особенности классификации дайковых (жильных) пород…………….6
3. Процессы и продукты стадий метасоматоза: грейзенизация, образование вторичных кварцитов. Минеральный состав, структуры и текстуры, полезные ископаемые…………………………………………….8
3.1. Фация вторичных кварцитов…………………………………………….11
3.2. Физико-химические условия образования метасоматитов……………15
3.3. Распространенность и рудоносность метасоматитов………………….15
3.4. Минеральный состав, текстуры и структуры руд…………………….16
Список используемой литературы…………………………………………….28

Прикрепленные файлы: 1 файл

контрольная петрография Аяна.docx

— 95.97 Кб (Скачать документ)

Аплиты – светлоокрашенные тонкозернистые породы аплитовой структуры. Они состоят из тех же светлых (салических) минералов, из которых состоят генетически родственные им глубинные породы, отличаясь от них полным или почти полным отсутствием цветных минералов (гранит-аплиты, гранодиорит-аплиты, диорит-аплиты, сиенит-аплиты, габбро-аплиты и т. д.).

Пегматиты обладают светлыми окрасками, от крупно- до гигантозернистой пегматитовой или гранофировой структурой. Они формируются при участии флюидов и кроме салических минералов, аналогичных материнской интрузии, обогащены крупными кристаллами мусковита, биотита, лепидолита, турмалина, апатита, топаза и др.

Существуют гранит-пегматиты, сиенит-пегматиты, нефелин-сиенит-пегматиты и другие разновидности пегматитов.

Лампрофиры – темноокрашенные мелкозернистые, иногда порфировидные породы. Крупные выделения в них представлены исключительно фемическими минералами (лампрофировая структура). Наиболее распространенными являются плагиоклаз-роговообманковые (спессартиты), плагиоклаз-биотитовые (керсантиты), калиево-полевошпатово-роговообманковые (вогезиты) и калиево-полевошпатово-биотитовые (минетты) породы.

 Большинство туфов состоит из всех трех составляющих, в этом случае агрегатное состояние не указывают.

К пирокластическим породам примыкают породы смешанного происхождения, в состав которых в значительных количествах входят осадочные породы. Их называют туффитами, если примесь осадочного материала не превышает 50 %, и вулканогенно-осадочными породами, если примесь больше 50 %. Эти породы образуются одновременно с извержениями за счет перемещения рыхлого нелитифицированного пирокластического материала – тефры и перемешивания его с осадочным материалом.

3.Процессы и продукты стадий метасоматоза: грейзенизация, образование вторичных кварцитов. Минеральный состав, структуры и текстуры, полезные ископаемые.

Всех случаях, кроме мусковитовых грейзенов, в которых количество кремнезема по сравнению с исходными гранитами несколько снижается. В кварцевых грейзенах содержание SiO2 максимально и достигает 89-94 мас.%. Литий и калий в начале процесса обычно накапливаются в слюдах, а на конечных его стадиях выносятся вместе с алюминием. Кальций и магний при грейзенизации выносятся.

Таким образом, для грейзенизации характерен привнос H+, F, Si, а также Li и B и вынос Ca и Mg, к которым может добавляться Na и K при наиболее интенсивном изменении.

Внешний облик. Благодаря обилию слюды, флюорита, топаза грейзены легко определяются уже при макроскопическом изучении. От близких по минеральному составу слюдяно-кварцевых метаморфических пород они отличаются беспорядочным расположением чешуек слюды, сохранением реликтовых минералов, структур и текстур исходных пород, присутствием многочисленных прожилков, сложенных слюдами, кварцем и другими минералами. Грейзены окрашены в светло-серый, серый, зеленовато-серый и зеленый цвета, присутствие топаза придает им голубоватый оттенок. Текстуры метасоматитов разнообразны и во многом зависят от строения исходных пород. Наиболее типичны массивная текстура, а также полосчатая, пятнистая, брекчиевидная, плотная и ноздревато-пористая текстуры.

Микроструктуры грейзенов зависят от интенсивности метасоматизма. Можно проследить постепенные переходы от бластогранитовой, бастопорфировой и бластопсаммитовой структур к гетеробластовой, грано- и лепидобластовой, гломеробластовой и нематогранобластовой. Гранобластовая структура типична для кварцевых и топазовых грейзенов. Гломеробластовая структура определяется наличием скоплений зерен одного минерала, например, топаза или флюорита. Турмалин-кварцевые грейзены обладают нематогранобластовой структурой.

Стадийность и зональность метасоматитов. Последовательность замещения новообразованными минералами наиболее отчетливо устанавливается при грейзенизации гранитов. Прежде всего становится неустойчивым биотит, который превращается в агрегат мусковита, магнетита и флюорита. Олигоклаз испытывает деанортитизацию, а позднее замещается мусковитом.

По иному протекает разложение K-Na полевого шпата. На первом этапе перекристаллизацию и частичное замещение пластинчатым кварцем, проникающим по ослабленным направлениям в полевой шпат и как бы клиньями расчленяющим его. В дальнейшем полевой шпат испытывает альбитизацию и только после этого замещается кварц-мусковитовым агрегатом. Таким образом, имеет место избирательное замещение полевых шпатов мусковитом и относительная устойчивость калиевого полевого шпата в кислотных растворах. Окончательное разложение калиевого полевого шпата фиксирует переход от грейзенизированных гранитов к кварц-мусковитовым грейзенам с гранолепидобластовой структурой.

Итак, последовательность замещения магматических минералов гранитов такова:

Би ® Пл ® Кш.

При дальнейшем усилении грейзенизации становится неустойчивым мусковит, который замещается кварцем и топазом; при этом формы топазовых выделений могут быть самыми разнообразными: зерна, порфиробласты с многочисленными ответвлениями, звездчатые скопления игольчатых или призматических кристаллов. Грейзены с пятнистыми выделениями топаза обладают гломеробластовой, порфиробластовой или нематобластовой структурами. В зонах максимального изменения формируются кварцевые грейзены с гранобластовой структурой, в которых топаз сохраняется редко и имеет вид разобщенных и корродированных реликтов, иногда еще сохраняющих единую оптическую ориентировку. Одним из наиболее поздних минералов грейзенов является флюорит, кристаллы которого обладают причудливыми формами и цементируют мусковит и кварц поздних генераций. В конечном итоге грейзенизация приводит к образованию кварца или агрегата кварца и слюды.

Метасоматическая зональность наиболее отчетливо выражена в жильных грейзеновых телах, которые имеют симметричное строение относительно осевых жил или рудоконтролирующих трещин. В крупных грейзеновых куполах зональность асимметрична по отношению к апикальной поверхности гранитов и выражена менее отчетливо.

Типичная метасоматическая колонка была изучена в районе Кураминского хребта Г.А. Лисициной и Б.И. Омельяненко в 1961 г.

  1. Гранит: Кв + Кш + Ол + Би + Мт
  2. Кв + Му + Кш + Аб + Мт
  3. Кв + Му + Кш + Аб
  4. Кв + Му + Кш

4а.    Кв + Му

4б.  Кв + То

5.     Кв

Этот пример отражает тенденцию к образованию существенно кварцевых метасоматитов во внутренних зонах. Породы зон 1-3 относятся к грейзенизированным гранитам, а зоны 4-5 являются собственно грейзенами. Кварц-топазовая зона 4б во многих случаях не образуется. Между внешними более мощными зонами колонки наблюдаются расплывчатые постепенные переходы. Внутренние маломощные зоны характеризуются относительно четкими границами.

В тылу метасоматической колонки может возникнуть и мусковитовая зона. Подобные грейзены, образованные по редкометальным гранитам, были изучены В.И. Коваленко (1969 г.)

  1. Гранит
  2. Кв + Кш + Аб + Би + Му
  3. Кв + Кш + Аб + Му
  4. Кв + Аб + Му
  5. Кв + Му + Флю
  6. Му + Флю

Для редких андалузитовых грейзенов Дальненского гранитного плутона Казахстана Д.М. Захаровой (1956 г.) описана оригинальная метасоматическая колонка, в которой андалузит занимает место топаза:

  1. Биотитовый гранит
  2. Кв + Кш + Пл + Би + Му
  3. Кв + Кш + Пл + Му
  4. Кв + Му + Кш
  5. Кв + Му + Анд
  6. Му + Анд

Если грейзены развиваются по гранитоидам повышенной основности, то фронтальная зона метасоматических колонок часто бывает сложена кварц-хлоритовыми пропилитами.

Центральные части зонально построенных грейзеновых тел, содержащих мономинеральные кварцевые зоны, нередко пересечены гидротермальными жилами, которые являются более поздними образованиями по сравнению с грейзненами. Ответвления этих жил пересекают различные зоны метасоматических колонок.

Жилы преимущественно сложены кварцем и в значительно меньшем количестве слюдами и мусковит-жильбертитового ряда, хлоритом, альбитом и ортоклазом. К жильбертитовой оторочке жил приурочены скопления берилла, вольфрамита и висмутина. Образование жил обусловлено теми же кислотными растворами, которые привели к возникновению грейзенов, а затем существенно измелили свой состав и кислотность-щелочность при взаимодействии с вмещающими породами и при понижении температуры.

Грейзеновые месторождения. Среди грейзеновых месторождений по преобладающей рудной минерализации можно выделить следующие основные типы: вольфрамит-топаз-кварцевый, касситерит-топаз-кварцевый и комплексный вольфрамит-молибденит-топаз кварцевый.

С грейзенами связаны также имеющие важное промышленное значение месторождения бериллия.

3.1. Фация вторичных кварцитов

К фации вторичных кварцитов относятся продукты интенсивного среднетемпературного кислотного метасоматоза, равновесные с хлоридными растворами, которые содержат углекислоту и серу; pH колеблется от 1 до 4. В этих условиях оказываются устойчивыми только кварц и высокоглиноземистые минералы: корунд, андалузит, алунит, диаспор и другие. Термин вторичный кварцит был введен в русскую геологическую литературу Е.С. Федоровым и В.В. Никитиным в 1901 г., а позднее широко применялся Н.И. Наковником для обозначения метасоматитов, возникших в процессе поствулканической гидротермальной деятельности. Термин неудачен из-за своей неопределенности; ми часто обозначают гидротермально-измененые породы разного состава и генезиса.

Собственно вторичными кварцитами целесообразно называть метасоматиты, содержащие не менее 50% кварца. При меньшем количестве кварца правильнее говорить о кварц-корундовых, кварц-андалузитовых, кварц-алунитовых метасоматитах. Если кварц становится второстепенным минералом, то речь может идти о корундовых, андалузитовых и алунитовых метасоматитах.

Исходные породы. Вторичные кварциты формируются по вулканогенным, вулканогенно-осадочным и интрузивным породам кислого и среднего составов; особенно податливы при изменении пористые туфы.

Условия залегания метасоматитов. Вторичные кварциты приурочены к центрам преимущественно наземного кислого и среднего вулканизма и образуют массивы, измеряемые километрами в поперечнике. Такие массивы чаще всего обладают изометричной формой в плане и грубо концентрическим зональным строением, которое может осложняться разнообразными ответвлениями вдоль тектонических нарушений. Будучи породами, обогащенными кварцем, вторичные кварциты устойчивы к процессу выветривания, и сложенные ими массивы часто выделяются в рельефе, образуя возвышенности с ребристыми скалистыми склонами, зубчатыми гребнями и острыми пикообразными вершинами. В депрессиях между скалами и по периферии массивов вторичных кварцитов развиты аргиллизиты и другие рыхлые породы. Неравномерное ожелезнение придает этим породам характерную пеструю окраску с чередованием белых, желтых и красных пятен.

В сложно построенных массивах вторичные кварциты занимают либо центральные зоны, либо располагаются вокруг ядер кварц-калишпатовых метасоматитов и серицитолитов. По периферии массивов развиваются широкие ореолы пропилититов или аргиллизитов.

 

Минеральный состав.

Главными новообразованными минералами вторичных кварцитов являются кварц, серицит (мусковит), андалузит, алунит K2Al6(OH)4(SO4)4, корунд, диаспор, пирофиллит Al2[Si4O10](OH)2 и самородная сера.

К второстепенным и акцессорным минералам относятся пирит, гематит, рутил, топаз, зуниит, флюорит, турмалин, дюмортьерит, лазулит и барит.

Типоморфными минеральными ассоциациями вторичных кварцитов являются сочетания кварца с алунитом, диаспором, корундом, а также с самородной серой. Парагенезисы кварц + андалузит и кварц + серицит могут появляться не только во вторичных кварцитах, но и в грейзенах, березитах, серицитолитах, пропилитах, что затрудняет отнесение метасоматитов к тому или иному виду. В качестве дополнительного критерия, подтверждающего принадлежность кварц-андалузитовых и кварц-серицитовых метасоматитов к вторичным кварцитам, могут служить включения или прожилки диаспора, пирофиллита, алунита. В близких по составу пропилитах содержатся хлорит, карбонат, эпидот и альбит.

Средние размеры новообразованных минералов вторичных кварцитов составляет сотые и десятые доли миллиметра; корунд, пирит, алунит, гематит, могут образовывать миллиметровые и сантиметровые кристаллы. Преобладающая форма развития метасоматических минералов – агрегатные моно- или полиминеральные псевдоморфозы, переходящие в неясные, расплывчатые порфиробласты. Так, по плагиоклазу развиваются кварц-серицитовые или кварц-алунитовые псевдоморфозы, по калишпату – серицитовые или алунитовые, а по цветным минералам – кварц-пирит-рутил-серицитовые ассоциации с небольшим количеством глиноземистых минералов.

Новообразованный кварц представлен двумя генерациями. Ранний кварц образует рассеянные зерна размером в сотые и десятые доли миллиметра и их скопления, составляющие общий фон породы, гранобластовые мозаичные агрегаты и каймы обрастания вокруг реликтового кварца, а также жилки и агрегатные скопления в смеси с серицитом, замещающие первичные минералы. Сюда же относится микрозернистый кварц и с примесью алунита, развивающийся по основной массе вулканитов.

Кварц поздней генерации формирует тонкую сеть мелких ветвящихся прожилков мощностью от долей миллиметра до первых сантиметров. Оно особенно типичен для вторичных кварцитов по гранитоидам.

Серицит (мусковит) также представлен двумя генерациями. Ранний серицит встречается в виде мелких чешуек в составе агрегатных псевдоморфоз, замещающих полевые шпаты и биотит, или образует рассеянные скопления в метасоматитах. Серицит поздней генерации выполняет маломощные мономинеральные прожилки. В серицитовых вторичных кварцитах, образованных по риолитам, гранитам и трахитам, он представлен калиевой разностью, в метасоматитах по породам среднего состава – парагонитом. Серициты вторичных кварцитов, как правило, недосыщены щелочными металлами и обогащены кремнеземом.

Информация о работе Последовательность выделения минералов из магматического расплава. Реакционные ряды Боуэна