Попутный нефтяной газ

Автор работы: Пользователь скрыл имя, 16 Апреля 2014 в 19:29, курсовая работа

Краткое описание

Попутный нефтяной газ (ПНГ) – это смесь газов и различных веществ, которые выделяются из скважин в процессе добычи нефти. В отличие от природного газа попутный нефтяной газ содержит в своем составе кроме метана и этана большую долю пропанов, бутанов и паров более тяжелых углеводородов.
Как и природный газ или нефть, ПНГ является ценным сырьем для химической и энергетической промышленности. Несмотря на высокую теплотворную способность, использование ПНГ в электрогенерации затруднительно, в связи с существенной нестабильностью состава и наличием высокого числа примесей, что приводит к существенным затратам на подготовку (очистку) газа.

Прикрепленные файлы: 1 файл

1. курсовая.docx

— 498.00 Кб (Скачать документ)

В процессе подъема жидкости из скважин и транспорта ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается и обычно в несколько десятков раз превышает объем жидкости. Поэтому при низких давлениях их совместное хранение, а иногда и сбор становятся нецелесообразными. Приходиться осуществлять их раздельный сбор и хранение.

В современных системах сбора нефти и газа, газосепараторами оснащаются все блочные автоматизированные групповые замерные установки (за исключением установок, оснащенных массовыми расходомерами), дожимные насосные станции и центральные пункты сбора и подготовки нефти, газа и воды.

На блочных автоматизированных замерных установках отделение газа от нефти осуществляется только с целью раздельного измерения дебита скважин по жидкости и газу. После измерения нефть и газ снова смешиваются и подаются в общий нефтегазовый коллектор.

Часто отвод свободного газа от нефти осуществляется в нескольких местах.

Сепарация газа от нефти может происходить под влиянием гравитационных, инерционных сил и за счет селективной смачиваемости нефти. В зависимости от этого и различают гравитационную, инерционную и пленочную сепарации, а газосепараторы - гравитационные, гидроциклонные и жалюзийные.

Гравитационная сепарация осуществляется вследствие разности плотностей жидкости и газа, т.е. под действием их силы тяжести. Газосепараторы, работающие на этом принципе, называются гравитационными.

Инерционная сепарация происходит при резких поворотах газонефтяного потока. В результате этого жидкость, как более инерционная, продолжает двигаться по прямой, а газ меняет свое направление. В результате происходит их разделение. На этом принципе построена работа гидроциклонного газосепаратора, осуществляемая подачей газонефтяной смеси в циклонную головку, в которой жидкость отбрасывается к внутренней поверхности и затем стекает вниз в нефтяное пространство газосепаратора, а газ двигается по центру циклона.

Пленочная сепарация основана на явлении селективного смачивания жидкости на металлической поверхности. При прохождении потока газа с некоторым содержанием нефти через жалюзийные насадки (каплеуловители) капли нефти, соприкасаясь с металлической поверхностью, смачивают ее и образуют на ней сплошную жидкостную пленку. Жидкость на этой пленке держится достаточно хорошо и при достижении определенной толщины начинает непрерывно стекать вниз. Это явление называется эффектом пленочной сепарации. Жалюзийные сепараторы работают на этом принципе.

Наибольшее распространение на нефтяных месторождениях получили горизонтальные сепараторы, характеризующие повышенной пропускной способностью при одном и том же объеме аппарата, лучшим качеством сепарации, простотой обслуживания и осмотра по сравнению с вертикальными.

 

Горизонтальный газонефтяной сепаратор (Рисунок 1) состоит из технологической емкости 1, внутри которой расположены две наклонные полки 2, пеногаситель 3, влагоотделитель 5 и устройство 7 для предотвращения образования воронки при дренаже нефти. Технологическая емкость снабжена патрубком 10 для ввода газонефтяной смеси, штуцерами выхода газа 4 и нефти 6 и люк-лазом 8. Наклонные полки выполнены в виде желобов с отбортовкой не менее 150 мм. В месте ввода газонефтяной смеси в сепаратор смонтировано распределительное устройство 9. 

 

Рисунок 1 — Горизонтальный газонефтяной сепаратор

1 — технологическая емкость; 2 — наклонные желоба; 3 — пеногаситель; 4 — выход газа, 5 — влагоотделитель; 6 — выход нефти; 7 — устройство для предотвращения образования воронки; 8 — люк-лаз; 9 — распределительное устройство; 10 — ввод продукции

Сепаратор работает следующим образом. Газонефтяная смесь через патрубок 10 и распределительное устройство 9 поступает на полки 2 и по ним стекает в нижнюю часть технологической емкости. Стекая по наклонным полкам, нефть освобождается от пузырьков газа. Выделившийся из нефти газ проходит пеногаситель 3, где разрушается пена, и влагоотделитель 5, где очищается от капель нефти, и через штуцер выхода газа 4 отводится из аппарата. Дегазированная нефть накапливается в нижней части технологической емкости и отводится из аппарата через штуцер 6.

Для повышения эффективности процесса сепарации в горизонтальных сепараторах используют гидроциклонные устройства.

 

Горизонтальный газонефтяной сепаратор гидроциклонного типа (Рисунок 2) состоит из технологической емкости 1 и нескольких одноточных гидроциклонов 2. Конструктивно однотонный циклон представляет собой вертикальный цилиндрический аппарат с тангенциальным вводом газонефтяной смеси, внутри которого расположены направляющий патрубок 3 и секция перетока 4.

Рисунок 2  — Горизонтальный газонефтяной сепаратор гидроциклонного типа

1 — емкость; 2 — однотомный  гидроциклон; 3 — направляющий патрубок; 4 — секция перетока; 5 —каплеотбойник; 6 — распределительные решетки; 7 — наклонные полки; 8 — регулятор уровня 

 

В одноточном гидроциклоне смесь совершает одновременно вращательное движение вокруг направляющего патрубка и нисходящее движение, образуя нисходящий вихрь. Нефть под действием центробежной силы прижимается к стенке циклона, а выделившийся и очищенный от капель жидкости газ движется в центре его. В секции перетока нефть и газ меняют направление движения с вертикального на горизонтальное и поступают раздельно в технологическую емкость. Далее газовый поток проходит каплеотбойник 5, распределительные решетки 6 и выходит из сепаратора. Нефть по наклонным полкам 7 стекает в нижнюю часть емкости. Ее уровень поддерживается с помощью регулятора 8.

 

Вертикальный сепаратор (рисунок 3) представляет собой вертикально установленный цилиндрический корпус с полусферическими днищами, снабженный патрубками для ввода газожидкостной смеси и вывода жидкой и газовой фаз, предохранительной и регулирующей арматурой, а также специальными устройствами, обеспечивающими разделение жидкости и газа.

 

 

 

 

 

 

 

 

 

Вертикальный сепаратор работает следующим образом (Рисунок 3).

Рисунок 3 — Вертикальный сепаратор

А — основная сепарационная секция; К — осадительная секция; В — секция сбора нефти; Г— секция каплеудаления; 1 — патрубок ввода газожидкостной смеси; 2 — раздаточный коллектор со щелевым выходом; 3 — регулятор давления «до себя» на линии отвода газа; 4 — жалюзийный каплеуловитель; 5 — предохранительный клапан; 6 — наклонные полки; 7 — поплавок; 8 — регулятор уровня на линии отвода нефти; 9 — линия сброса шлама; 10 — перегородки; 11 — уровнемерное стекло; 12 — дренажная труба 

 

Газонефтяная смесь под давлением поступает в сепаратор по патрубку 1 в раздаточный коллектор 2 со щелевым выходом. Регулятором давления 3 в сепараторе поддерживается определенное давление, которое меньше начального давления газожидкостной смеси. За счет уменьшения давления из смеси в сепараторе выделяется растворенный газ. Поскольку этот процесс не является мгновенным, время пребывания смеси в сепараторе стремятся увеличить за счет установки наклонных полок 6, по которым она стекает в нижнюю часть аппарата. Выделяющийся газ поднимается вверх. Здесь он проходит через жалюзийный каплеуловитель 4, служащий для отделения капель нефти, и далее направляется в газопровод. Уловленная нефть по дренажной трубе 12 стекает вниз.

Контроль за уровнем нефти в нижней части сепаратора осуществляется с помощью регулятора уровня 8 и уровнемерного стекла 11. Шлам (песок, окалина) из аппарата удаляется по трубопроводу 9.

Достоинствами вертикальных сепараторов являются относительная простота регулирования уровня жидкости, а также очистки от отложений парафина и механических примесей. Они занимают относительно небольшую площадь, что особенно важно в условиях морских промыслов, где промысловое оборудование монтируется на платформах или эстакадах. Однако вертикальные сепараторы имеют и существенные недостатки: меньшую производительность по сравнению с горизонтальными при одном и том же диаметре аппарата, а также меньшую эффективность сепарации.

В настоящее время выпускаются двухфазные горизонтальные сепараторы типа НГС и типа УБС. Наряду с двухфазными организовано производство трехфазных сепараторов,  которые  помимо отделения газа от нефти, служат также для отделения и сброса свободной воды. Перечисленные сепарационные установки служат в качестве технологического оборудования центральных пунктов сбора и подготовки нефти, газа и воды (ЦППН).

 

 

 

 

 

2.1  Процесс отделение от нефти газа и его использование.

 

Продукция нефтяных скважин по выкидным линиям поступает на групповую замерную установку 2 типа «Спутник», где измеряют дебит нефти, газа и воды.  

На групповой установке в поток газоводонефтяной смеси с помощью блока подачи реагента 3 вводят реагент-деэмульгатор для разрушения нефтяной эмульсии в промысловых трубопроводах. От групповых замерных установок по нефтегазосборным коллекторам продукция скважин поступает на центральный пункт сепарации (ЦПС), в котором происходят все операции по разделению и подготовке нефти, газа и воды. Подача продукции скважин на ЦПС и через все его технологические блоки осуществляется, как правило, за счет энергетических возможностей продуктивных пластов или установок механизированной добычи нефти.

Рисунок  4 — Унифицированная технологическая схема комплекса сбора и подготовки нефти, газа и воды

 

На ЦПС перед сепараторами первой ступени 4 предусмотрено устройство для предварительного разделения газа и нефти, а также подача реагента-деэмульгатора с помощью блока подачи реагента 3 и горячей воды от аппаратов глубокого обезвоживания и обессоливания.

Нефтяной газ из сепаратора первой ступени 4 поступает на установку подготовки газа 13, а жидкая продукция — в емкость предварительного сброса воды 5, где от нефти отделяют свободную пластовую воду. Далее нефть поступает на установку глубокого обезвоживания и обессоливания, состоящую из печи 6, каплеобразователя 7, отстойника 8, смесителя 9, в котором нефть смешивается с чистой водой и поступает электродегидратор 10. Каплеобразователь 7 представляет собой систему трубопроводов, в которых подбором определенных турбулентных режимов течения достигается укрупнение мелких капель за счет их слияний при столкновениях под действием турбулентных пульсаций. Аппараты для глубокого обезвоживания и обессоливания нефти должны, как правило, работать с отбором нефтяного газа, выделяющегося из нефти при нагреве и снижении давления. Окончательное разгазирование обезвоженной и обессоленной нефти проводят в концевых  сепараторах 11.

Кондиционная нефть из концевого сепаратора 11 поступает на прием насосов 12 и направляется на узел учета нефти 15, включающий влагомер 14. Для аварийных ситуаций предусмотрен резервуар товарной нефти 16.

Часть горячей воды, отделяемой от нефти на установке глубокого обезвоживания и обессоливания нефти, насосом 12 закачивают в поток газоводонефтяной смеси, поступающей на ЦПС. Остальная вода из установки глубокого обезвоживания и обессоливания нефти вместе с пластовой водой, отделяемой от нефти в емкости предварительного сброса воды 5, поступает на установку подготовки воды, где сначала проходит блок очистки 25, в котором от нее отделяется капельная нефть. Затем в воду добавляют ингибитор коррозии с помощью блока подачи ингибитора 26, после чего она проходит блок дегазатора с насосом 20, узел замера расхода воды 19 и направляется на кустовую насосную станцию для использования в системе поддержания пластового давления. Для аварийных ситуаций предусмотрен резервуар пластовой воды 18 и насос 12.

Уловленная в блоке очистки 25 капельная нефть, пройдя блок приема и откачки уловленной нефти 24 и резервуар некондиционной нефти 17, насосом закачивается в поток нефти, поступающей на установку подготовки нефти. Установка подготовки воды включает также узел подготовки сточных вод, состоящий из блока приема и откачки стоков 21, емкости шламонакопителя 22, мультигидроциклона 23.

Нефтяной газ, отделяемый от нефти в отстойнике 8, электродегидраторе 10 и концевом сепараторе 11, по газопроводам направляется на комплекс сооружений по подготовке газа 13.

Далее нефтяной газ проходит очистку от Н2S и СО2 абсорбцией аминами и поступает на установку осушки нефтяного газа, где он охлаждается в воздушном холодильнике и поступает в сепаратор, в котором происходит отделение от газа углеводородного конденсата. Отделяемый углеводородный конденсат насосом подается либо в нефть перед сепаратором первой ступени, либо в товарную нефть. Нефтяной газ после удаления углеводородного конденсата и свободной воды поступает в абсорбер, где его осушают раствором этиленгликоля.

После разделения сухой отбензиненный газ может транспортироваться по обычному газопроводу, а ШФЛУ — поставляться на дальнейшую переработку для производства нефтехимических продуктов. Заводы по переработке газа, нефти и газового конденсата в нефтехимические продукты являются высокотехнологичными комплексами, сочетающими в себе химические производства с производствами нефтепереработки.

Также попутный нефтяной газ можно использовать на энергетических установках для выработки электроэнергии — это позволяет нефтяным компаниям решить проблему энергоснабжения промыслов, не прибегая к покупке электроэнергии.

  1. Методы оценки качества работы промысловых сепараторов

 

    1. Показатели работы промысловых сепараторов.

 

Показатели работы промысловых сепараторов подразделяются на 3 группы.

Первая группа:  характеризуется степенью разгазирование нефти или ее усадки.

Массовые расходы нефти до и после сепарации:

 

Массовые расходы газа до и после сепарации:

 

 

Вторая группа: величины, характеризующие эффективность работы сепаратора по степени уноса капельной жидкости и пузырьков газа.

Степень уноса капельной жидкости:

,  где

- объемный расход капельной  жидкости, уносимой за пределы  сепаратора;

 – объемный расход  газа.

Степень уноса пузырьков газа:

 

- объемный расход  пузырьков газа, уносимой за пределы сепаратора;

Информация о работе Попутный нефтяной газ