История взглядов на образование Земли

Автор работы: Пользователь скрыл имя, 19 Января 2013 в 20:05, доклад

Краткое описание

Гипотеза совместного формирования (совместной аккреции). Палеонтологический метод. Немецкий философ И. Кант (1724-1804) в 1755 г. в книге “Всеобщая естественная история и теория неба” изложил гипотезу формирования нашей планетной системы из холодной рассеянной материи, заполнявшей все пространство этой системы и вращавшейся вокруг центрального сгустка – Солнца.

Прикрепленные файлы: 1 файл

инженерная геология.docx

— 272.63 Кб (Скачать документ)

Однако этой гипотезе противоречат некоторые факты. Более  вероятно, что древнейшие гранитоиды образовались благодаря замещению состава осадоч-но-вулканогенных толщ горячими выделениями газов и расплавов, приносившими кремнезем и щелочи. Эти газы и расплавы могли поступать снизу из верхней мантии или из нижних слоев самой коры. Если они шли из мантии, то гранитизации могли подвергнуться и осадочно-вулканогенный слой и первичная базальтовая кора.

Так или иначе, за время течения архейского этапа  образовалась древнейшая часть гранитного слоя древних платформ. Его образование  означало переход от первичной океанической к первичной континентальной коре. Последняя, вероятно, не везде имела одинаковую мощность. На следующем этапе более обогащенные гранито-гнейсовыми породами участки коры как более легкие «всплыли» среди базальтовых пород и образовали первые участки (зародыши) будущих континентов. Эти участки имели в плане овальную или амебовидную форму и достигали в поперечнике многих сотен километров.

Таковы наиболее ранние этапы развития земной коры, о которых можно лишь высказать  более или менее правдоподобные предположения; следующие этапы  устанавливаются лучше, достовернее.

Позднеархейский — раннепротерозойский этап (3,5—2,0 млрд. лет). На этом этапе продолжалось наращивание земной коры: на ее поверхности со временем накапливались мощные вулканические и осадочные толщи. За время течения этапа процессы резкого изменения пород, т. е. метаморфизма и гранитизации, а также образование складчатости проявились дважды — на рубежах около 2,6 и 2,0 млрд. лет назад; это дает основание выделить два подэтапа: позднеархейский и раннепротерозойский.

Геосинклинальные пояса и древние  платформы неогена. 1. Древние платформы  и крупные срединные массивы  с раннекембрийским фундаментом. 2. Срединные массивы с ранне- или с позднекембрийским фундаментом. 3. Геосинклинальные пояса (поздний протерозой, ранний кайнозой).

В течение первого  подэтапа в результате главным образом подводных извержений накапливались мощные толщи вулканических пород преимущественно базальтового состава. Наряду с ними накапливаются и осадочные толщи, нередко со значительным содержанием кварца. Мощность осадочных толщ, например, на Канадском щите местами огромна — она достигает 6—9 км. Следовательно, уже на данной стадии развития коры существовали и разрушались достаточно крупные ее поднятия, сложенные гранито-гнейсовыми породами. Эти поднятия выступали в виде островов среди морей архея. Архейский подэтап завершился эпохой складчатости, сопровождавшейся метаморфизмом и гранитизацией горных пород. В результате на многих щитах — Канадском, Южно-Африканском, Балтийском — образовались чрезвычайно характерные многочисленные "семейства" гранито-гнейсовых куполов, группирующихся нередко в овалы. Кое-где такие купола располагаются настолько тесно, что осадочно-вулканогенные толщи архея сохранились лишь в узких промежутках между ними, где они слагают сжатые и сильно смятые в складки зоны прогибов — так называемые синклинории.

Архейские области  прогибания обладают многими чертами сходства с будущими геосинклиналями — в них чередуются осадочные и вулканические отложения, суммарная мощность которых весьма значительна — нередко превышает 10 и достигает 20 км. Во всех областях прогибания наблюдались явления складчатости различной интенсивности, сопровождавшиеся метаморфизмом, а также процессами гранитизации. Платформ в архее еще не было, а глубинные разломы в условиях высокопроницаемой и разогретой земной коры быстро «залечивались» и перемещались в новое положение. Мало различался и состав осадочно-вулканических толщ разных районов. Однако, как показывают исследования, проведенные в последнее время, в архее намечаются глубинные разломы и более жесткие структуры с осадками и лавами разного состава.

В результате процессов  складчатости, метаморфизма и гранитизации обширные площади, поднявшиеся над уровнем океана, объединились в первичные материки, или протоконтиненты. Однако в начале раннепротерозойского подэтапа объединение сменилось раздроблением коры, при этом обособились относительно устойчивые глыбы земной коры. Эти глыбы (иногда их называют протоплатформа-ми) включают и более древние жесткие ядра из пород гранито-гнейсового состава. На поверхности глыб местами возникли плоские прогибы, заполнившиеся красноцветными обломочными, карбонатными и вулканогенными толщами. Устойчивые глыбы имеют угловатые контуры: они ограничены разломами в древнейшей континентальной коре.

Большинство будущих  древних платформ возникло в результате слияния ряда таких глыб, или массивов, разделенных узкими (в десятки  километров), но длинными прогибами. Наряду с узкими прогибами существовали и более широкие подвижные  пояса, сохранившие свою подвижность  и на следующих этапах геологической  истории. По всем основным особенностям своего строения и развития эти ранне-протерозойские подвижные пояса уже вполне соответствуют современному представлению о геосинклиналях. Но высоких гор, от разрушения которых образуется обломочный материал, на месте геосинклиналей того времени еще не возникло. Во многих раннепротерозойских геосинклиналях уже довольно отчетливо различаются внешние зоны, в которых отлагались почти исключительно осадочные толщи, включая известняки и доломиты, и внутренние зоны, в которых накапливались продукты подводных извержений — лавы, вулканические туфы и др. Раннепротерозойское время закончилось новой эпохой складчатости, метаморфизма и гранитизации. Первичный гранито-гнейсовый слой еще раз увеличился таким образом; его формирование в пределах современных древних платформ на этом по существу закончилось.

Отметим, что тектонические  процессы в. раннем протерозое сопровождались выносом из мантии и более глубоких горизонтов коры значительных количеств  естественнорадиоактивных элементов — урана, тория, калия, которые концентрировались в гранитоидах и в обломочных толщах. Конец раннего протерозоя — 2 млрд. лет до н. э. — оказался очень важным рубежом в тектонической истории Земли. К этому времени в основном закончились процессы изменения общего характера развития литосферы, начавшиеся на рубеже 2,5 млрд. лет, поэтому ранний протерозой можно считать переходным этапом в развитии земной коры.

Среднепротерозойский этап (2,0—1,4 млрд. лет). Этот этап, в течение которого продолжалось развитие континентальной коры, относительно плохо «документирован» осадками и потому с тру дом поддается расшифровке. Как постепенно проясняется в последние годы, эволюция коры на протяжении этого периода подразделялась, видимо, на два подэтапа.

В течение первого  подэтапа (2—1,7 млрд. лет), соответствующего среднему протерозою, еще «доживали» отдельные геосинклинальные системы, заложенные в раннем протерозое, а также развивались узкие прогибы. Этот процесс завершился новой эпохой складчатости, вулканизма и движений коры в интервале примерно 1,7—1,6 млрд. лет, при этом формировались толщи из излившихся и глубинных (интрузивных) пород, включающие кислые лавы и граниты типа рапакиви. (Эти красные граниты выступают, в частности, в Выборгском массиве на Карельском перешейке; ими облицованы набережные, и из них высечены постаменты многих памятников в Ленинграде.) Эти очаги магматизма в пределах самой земной коры свидетельствуют о ее разогреве (вплоть до нижней части гранитного слоя) под воздействием все еще высокого теплового потока из глубоких недр. Благодаря частичному плавлению гранитного слоя и насыщению его щелочными растворами повышалась однородность фундамента будущих древних платформ. На ранее объединившихся участках коры в течение этого подэтапа местами возникли плоские прогибы и впадины — так называемые синеклизы, в которых накапливались красноцветные толщи обломочных пород с прослоями покровных базальтовых излияний, поднимавшихся из мантии по расколам уже охлажденной коры. В начале среднего протерозоя в некоторых районах (в частности, в Центрально-Азиатском поясе между Сибирской и Китайской платформами) возобновились опускания и накапливались не мощные и однородные карбонатные толщи.

На втором подэтапе (1,7—1,4 млрд. лет) на площади современных континентов преобладали поднятия, в ходе которых к началу позднего протерозоя, вероятно, сформировался огромный континентальный платформенный, массив — «Большая Земля», занимавший все континентальное полушарие Земли. Предположение о его существовании теперь подтверждается данными радиогеохронометрии.

Какова же была при этом судьба океанов? В раннем протерозойском этапе воды покрывали  практически всю поверхность  Земли за исключением вулканических  архипелагов и небольших участков островной суши — "микроконтинентов". За счет появления этих осушенных участков и дополнительного поступления образовавшейся в недрах ювенильной, т. е. первичной, воды, поднимавшейся на поверхность в ходе вулканических извержений, глубина первичного океана должна была несколько возрасти—примерно до 2,5—3,0 км, Но ведь в среднем протерозое уже огромная площадь стала сушей. Отдельные участки ее временами покрывались неглубоким морем, в котором отлагались известняки. Куда же в таком случае делась вода? Приходится допустить, что вместилищем воды стала возникшая в это время впадина Тихого океана, породившая затем по своей окраине геосинклиналъный пояс вокруг всего океана. Протерозойская кора, бывшая на месте этого океана, могла в дальнейшем войти в состав фундамента складчатых горных сооружений, опоясывающих Тихий океан. В центре же океана древняя кора заместилась более молодой океанической корой. Но это, конечно, лишь одно из возможных предположений.

Грунто́вая вода́ — гравитационная вода первого от поверхности земли постоянно существующего водоносного горизонта, расположенного на первом водоупорном слое. Имеет свободную водную поверхность и обычно над ней отсутствует сплошная кровля из водонепроницаемых пород.

Грунтовая вода заключена  в рыхлых и в слабосцементированных  породах (вода пластового типа) или  заполняет трещины в магматических, метаморфических или осадочных  сцементированных пород (вода трещинного типа), залегает в четвертичных отложениях (поровые воды).

Грунтовые воды формируются  за счёт инфильтрации атмосферных осадков  и поверхностных вод. Область  питания грунтовых вод обычно совпадает с областью распространения  водоносного горизонта. Мощность горизонта  непостоянна и зависит от свойств  водосодержащих пород, расстояния до области  разгрузки, интенсивности питания  и т. д.

Главная характерная  особенность грунтовых вод, отличающая их от более глубоких артезианских вод — отсутствие напора.

Наиболее существенное влияние на режим грунтовых вод  оказывают метеорологические условия (атмосферные осадки, испарения, температура, атмосферное давление и т. д.), гидравлические условия (изменение режима поверхностных водоёмов, питающих или дренирующих П. в.), хозяйственная деятельность человека (строительство гидротехнических и гидромелиоративных сооружений, откачка воды и нефти из недр, добыча полезных ископаемых, удобрение сельскохозяйственных земель, промстоки и др.).

Грунтовые воды оказывают  разрушающее влияние на бетон и другие строительные материалы.

При возведении сооружений грунтовые воды исследуют на агрессивность. Различают следующие типы агрессивности.

  • Общекислотная. Водородный показатель воды меньше 6. Повышается растворимость карбоната кальция. В зависимости от марки цемента и значений pH агрессивность воды различна: при pH < 4 наибольшая, при pH = 6,5 — наименьшая.
  • Выщелачивающая. Вода содержит более 0,4—1,5 мг экв. гидрокарбоната. Проявляется в растворении карбоната кальция и выносе из бетона гидроксида кальция. Степень агрессивности воды определяется растворимостью карбоната кальция. Вынос гидроксида кальция увеличивается в присутствии хлорида магния, который вступает в обменную реакцию с гидроксидом кальция, образуя хорошо растворимый хлорид кальция.
  • Магнезиальная. Вода содержит более 750 мг/л магния двухвалентного. Предел допустимой концентрации ионов магния зависит от марки цемента, условий, конструкции сооружения, содержания сульфатных ионов и изменяется в широких пределах: от 1,0 до 2,5 %.
  • Сульфатная. Вода содержит свыше 250 мг/л сульфатных ионов. Присутствующие в воде в больших концентрациях сульфатные ионы, проникая в бетон, при кристаллизации образуют кристаллогидрат сульфата кальция, являющийся причиной вспучивания и разрушения бетона.
  • Углекислотная. Вода содержит свыше 3—4 мг/л углекислоты. Растворение карбоната кальция под воздействием растворённого диоксида углерода с образованием легкорастворимого гидрокарбоната кальция провоцирует процесс разрушения бетона.
  • Грунтовые воды по причине относительно лёгкой доступности имеют большое значение для народного хозяйства как источники водоснабжения промышленных предприятий, городов, посёлков, населенных пунктов в сельской местности и так далее.
  • Для добычи грунтовых вод делают колодцы, скважины с гравийной отсыпкой в сочетании с фильтрами из сетки галунного плетения

В условиях влажного климата  развиваются интенсивные процессы инфильтрации и подземного стока, сопровождаемые выщелачиванием почв и горных пород. При этом легко растворимые соли — хлориды и сульфаты — выносятся из пород и почв; в результате длительного водообмена формируются пресные Грунтовая вода, минерализованные лишь за счёт относительно мало растворимых солей (преимущественно гидрокарбонатов кальция). В условиях засушливого тёплого климата (в сухих степях, полупустынях и пустынях) вследствие кратковременности выпадения и малого количества атмосферных осадков, а также слабой дренированности местности подземный сток Грунтовая вода не развивается; в расходной части баланса Грунтовая вода преобладает испарение и происходит их засоление. Вблизи рек, водоемов, водохранилищ и т. п. грунтовые воды в значительной степени опреснены и по качеству могу удовлетворять нормам питьевой воды.

Минерализация — сумма всех минеральных веществ, растворённых в воде, выраженная в граммах абсолютно сухого остатка, полученного выпариванием 1 л воды. Классификация вод по степени минерализации:

  • Пресные — до 1 г/л. Преобладающий химический тип вод: гидрокарбонатные кальциевые.
  • Слабосолоноватые — 1—3 г/л. Сульфатные, реже хлоридные.
  • Солоноватые — 3—10 г/л. Сульфатные, реже хлоридные.
  • Солёные — 10—15 г/л. Сульфатные, хлоридные.
  • Рассолы — больше 50 г/л. Хлоридно-натриевые.

Жёсткость воды обусловлена присутствием в воде ионов кальция и магния. Различают:

  • общую жёсткость (сумма мг экв. ионов Ca и Mg в литре воды),
  • карбонатную (величина рассчитывается по количеству гирокарбонатных и карбонатных ионов) и
  • некарбонатную (жёсткость общая за вычетом жёсткости карбонатной).

По общей жёсткости  воды подразделяются на 5 типов:

  • очень мягкая: <1,5 мг экв./л,
  • мягкая: 1,5—3 мг экв./л,
  • умеренно жёсткая: 3—6 мг экв./л,
  • жёсткая: 6—9 мг экв./л,
  • очень жёсткая: >9 мг экв./л.

Вблизи свалок, скотомогильников, различного рода химических, радиоактивных захоронений грунтовые воды заражены. Грунтовые воды являются показателем чистоты почв, местности.

Информация о работе История взглядов на образование Земли