Слоистые пластики и фольгированные материалы

Автор работы: Пользователь скрыл имя, 21 Ноября 2014 в 19:21, реферат

Краткое описание

Замена в печатных схемах обычного трёхмерного проволочного монтажа двумерным, состоящим из сети проводников, которые размещаются на диэлектрической подложке – это изобретение, связанное с именем К. Паролини (Франция, 1926г.), которое по важности можно сравнить с изобретением книгопечатания Гутенбергом.
Печатная плата (ПП) представляет собой изоляционную пластину, играющую роль механического каркаса ПП, на одну или обе поверхности которой нанесён токопроводящий рисунок (как правило медная фольга), сформированный проводниками, соединяющими электрорадиорадиоэлементы (ЭРЭ) в соответствии с электрической схемой. ЭРЭ крепятся на печатную плату либо запайкой ножек деталей в специальные отверстия в ПП, обеспечивая механический крепёж ЭРЭ (dip-монтаж), либо поверхностным монтажом (пайкой элементов непосредственно на дорожки – chip-монтаж).

Содержание

1. Введение 3
2. Технология получения слоистых пластиков 5
3. Классификация и принцип маркировки 8
4. Физико-химические свойства 10
5. Механическая обработка слоистых пластиков 17
6. Список литературы 21

Прикрепленные файлы: 1 файл

Реферат Слоистые пластики.doc

— 1.58 Мб (Скачать документ)

Ниже приводятся методы механической обработки и режима резания, применение которых дает достаточно удовлетворительные результаты.

Разрезание и распиливание. Листовые слоистые пластики тонких размеров могут разрезаться на ножницах гильотинного типа. Однако удовлетворительная кромка в этом случае получается только при малых толщинах слоистых пластиков (часто не превышающих 2 – 3 мм). Для ровной обрезки листы материала должны быть хорошо прижаты к столу гильотинных ножниц в местах, непосредственно прилегающих к нижнему лезвию. Угол между режущими кромками обычно берут равным 6 – 8°.

Гетинакс, текстолит и древесный слоистый пластик толщиной от 3 до 25 мм распиливают циркулярными пилами, выше 25 мм – ленточными пилами.

При этом поверхность раздела тем чище, чем меньше выступает диск пилы над поверхностью распиливаемого материала. Вместе с тем это приводит к более быстрому затуплению зубьев и уменьшению производительности пилы вследствие необходимости уменьшения подачи во избежание подгорания материала. Поэтому высоту установки дисковой пилы в зависимости от требуемой чистоты разрезаемой поверхности подбирают практически.

Дисковые пилы могут быть с разведёнными или неразведёнными зубьями. В последнем случае диск пилы должен иметь вспомогательный угол в плане не менее 1 – 2°.

Дисковые пилы должны быть из быстрорежущей стали твердостью Rc = 62 – 64 с хорошо отшлифованной поверхностью. При этом скорость резания должна находиться на уровне 2000—3000 м/мин. Подача материала при обрезке колеблется и зависимости от толщины материала от 12 (для толщины 4 мм) до 2 (для толщины 20 мм) м/мин. При необходимости получения чистой поверхности подача должна быть уменьшена.

Ленточные пилы не дают достаточно чистой поверхности. Однако с их помощью можно разрезать гетинакс или текстолит толщиной до 250 мм.

Полотна ленточных пил должны иметь развод зубьев в половину толщины ленты пилы в каждую сторону. Число зубьев - 2 – 3 на 10 мм. Скорость полотна пилы 1200 – 1500 м/мин. Подача колеблется от 2 (для толщины 20 мм) до 0,4 (для толщины 100 мм) м/мин.

Применение вышеупомянутого инструмента для разрезания стеклотекстолита вследствие быстрого износа режущего инструмента не оказывается эффективным. Для этого следует применять абразивные или алмазные круги. Однако и при применении абразивных кругов наблюдается их большой износ, приводящий к тому, что их приходится менять почти каждую смену. В этом отношении алмазные круги (типа АСМ или АСБ) оказываются несравненно более стойкими (в 25 – 30 раз).

Сверление. Для сверления отверстий с малым диаметром глубиной до 6 мм  можно применять перовые сверла. Для сверления отверстий диаметром 10 мм и глубиной до 10 мм применяют спиральные сверла, для отверстий диаметром от 10 до 24 мм можно рекомендовать сверла с режущими кромками из твердого сплава. Перовые и спиральные сверла должны быть изготовлены из быстрорежущих сталей Р-9 и Р-18. Режущие кромки из твердого сплава должны изготовляться из твердых сплавов ВК-6, ВК-8 или ВК-3М. Твердость рабочей части сверла после закалки и многократного отпуска должна находиться на уровне Rc = 62 – 64. Угол заострения резца для текстолита должен составлять 55 – 60°, гетинакса 100 – 110°. Задний угол на периферии следует принимать равным 10 – 15°. Скорость резания при работе со спиральными свёрлами из быстрорежущей стали зависит от диаметра отверстий и не должна превышать 60 м/мин (во избежание подгорания стенок материала). Подача должна быть не выше 0,3 и не менее 0,05 мм/оборот.

При сверлении отверстий свёрлами с режущей частью из твердых сплавов скорость резания можно увеличивать в 2 – 2,5 раза.

Во избежание расслоения слоистых пластиков необходимо соблюдать следующие условия: хорошее крепление обрабатываемого материала, плотное прилегание его к опорной поверхности, применение подкладок, хороший отвод стружки.

Во всех случаях следует учитывать, что благодаря спружиниванию материала слоистого пластика диаметр отверстия получается на 0,01 – 0,05 мм меньше, чем диаметр сверла.

Нарезание резьбы. Для нарезания наружной резьбы применяют резьбонарезные головки с круглыми гребенками. Для получения внутренней резьбы пользуются метчиками. Инструмент должен быть изготовлен из быстрорежущей стали с широким и круглым профилем зуба и углом заточки 60°. Для отвода стружки метчики должны быть с тремя канавками. Перо не должно быть широким во избежание увеличения трения и забивания канавки стружкой.

Углы режущей кромки: передней g=15°, задней a=5-8°. При нарезанни резьбы производится смазка резьбового инструмента маслом, пчелиным воском, тальком и т.п.

Штампование, вырубка и пробивание. Для успешного осуществления этих операций необходимо применение штампов с плотным прижимом листа и изделия в рабочий момент. Режущие кромки пуансона и матрицы должны быть острыми, а зазор между пуансоном и отверстием матрицы не превышать 10 – 15% толщины листа (лучшие результаты получаются, когда этот зазор не превышает 0,025 – 0,05 мм).

Конусность пуансона для его выемки во избежание образования отрыва материала («ореолы») рекомендуется выдерживать в 5° (задний угол). Материал штампа – углеродистая сталь У-9, имеющая твердость после закалки и отпуска Rс = 54 – 56.

При вырубке прямоугольных отверстий необходимо закруглять острые углы радиусом не менее 0,5 мм. Диаметр штампуемого отверстия, как правило, не должен быть меньше толщины материала. Расстояние вырубаемого отверстия от края, а также расстояние между вырубаемыми отверстиями должно не менее чем в 2 – 3 раза превышать толщину штампуемого материала.

Способность к штампованию слоистых пластиков находится в прямой зависимости от относительного удлинения, к которому способен материал при мгновенном его разрыве.

В этом отношении слоистые пластики электротехнического назначения могут быть расположены по степени штампуемости в порядке убывания следующим образом: текстолит ЛТ, текстолиты А и Б, стеклотекстолит, гетинакс. Для каждого вида слоистых пластиков существует свой предел толщины, выше которого не удается получать детали удовлетворительного качества. Эта предельная толщина колеблется от 2 до 3 – 4 мм (начиная с гетинакса и кончая текстолитом ЛТ). Лучшие результаты получаются при подогреве слоистых пластиков до температуры 60 – 80°С. Однако такие материалы, как текстолит ЛТ и текстолиты А и Б, можно штамповать без подогрева. При подогреве материалов перед штампованием следует учитывать усадку, которая связана с температурным коэффициентом расширения слоистых пластиков, лежащим в пределах от (1,7…3,5)х10-5    °С-1.

Одновременно следует учитывать способность слоистых пластиков к спружиниванию. Спружинивание при этом колеблется в пределах от 0,02 до 0,13 мм (для стеклотекстолита, гетинакса и текстолита).

 

Оценка степени штампуемости слоистых пластиков толщиной 1,5 мм

 

Наименование и марка слоистого пластика

Степень штампуемости

без подогрева

с подогревом

   Гетинакс I

4 – 5

5 – 6

   Гетинакс VI

5

6

   Стеклотекстолит

5 – 6

6

   Текстолиты А и Б

5 – 6

6 – 7

   Текстолит ЛТ

6

7


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

 

  1. Барановский ВВ, Дулицкая ГМ. Слоистые пластики электротехнического назначения. М. Энергия, 1976
  2. Кноп А, Шейб В. Фенольные смолы и материалы на их основе. М. Химия, 1983
  3. Устинов СН. Комплексные фенольно-анилино-формальдегидные смолы для пластмасс и слоистых пластиков. «Хим. промышленность», 1959, №1, с.42-44
  4. Киселёв БА. Стеклопластики. М. Госхимиздат, 1961, 330с
  5. Шишко ВИ, Барановский ВВ, Аврасин ЯД, Рекст ВБ, Якобан БВ, Замкевич ВИ, Вакуленко ЕГ. Стеклотекстолиты на основе нетканых стекловолокнистых армирующих материалов. «Пластмассы», 1972, №3, с.70-72
  6. Шугал ЯЛ. Фольгированные слоистые пластики в электротехнической промышленности. М. «Информстандартэлектро»,1968, 32с.
  7. Смельницкий ФС, Горелов НВ, КоноваловПГ. Фольгированные слоистые пластики для печатных схем. М. Энергия, 1969
  8. Барановский ВВ, Шугал ЯЛ. Слоистые пластики электротехнического назначения. М.-Л. Госэнергоиздат, 1963, 229с.

 


 



Информация о работе Слоистые пластики и фольгированные материалы