Ядерная энергетика и экология

Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 10:44, реферат

Краткое описание

Ядерная энергетика – активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран – достаточно распространенный элемент на Земле. Но следует помнить, что ядерная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов.
Насколько опасна ядерная энергетика? Этим вопросом особенно часто стали задаваться в последнее время, особенно после аварий на атомных электростанциях "Три-Майл-Айленд" в США и Чернобыльской АЭС в СССР.

Содержание

Введение ………………………………………………………………3
1. Развитие атомной энергетики …………………………………….. 5
2. Ядерное топливо …………………………………………………..11
3. Радиоактивное воздействие на биосферу ………………………...13
4. Проблема радиоактивных отходов ……………………………….17
Заключение ……………………………………………………………20
Список используемой литературы …………………………………..22

Прикрепленные файлы: 1 файл

КЗ Экология.docx

— 69.60 Кб (Скачать документ)

 

2. Ядерное топливо

 

Цепная реакция  деления ядер сопровождается выделением огромного количества энергии. Так, при делении тяжелого ядра на два  осколка освобождается энергия, равная примерно 1,1 МэВ на один нуклон. Расчеты показывают, что 1 кг урана выделяет в миллионы раз больше энергии, чем 1 кг каменного угля. Следовательно, ядерное топливо – чрезвычайно энергоемкий источник энергии. В то же время ядерный топливный цикл –сложнейший технологический процесс.

В отличие от углеродосодержащих носителей энергии, применяемых и в то же время  и как сырье для химической промышленности, ядерное топливо представляет практический интерес преимущественно для производства электрической и тепловой энергии. Огромные возможности для развития атомной энергетики открываются с созданием реакторов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровождается производством вторичного горючего – плутония, что позволит кардинально решить проблему обеспечения ядерным топливом. Как показывают оценки, 1 т гранита содержит примерно 3 г урана-238 и 12 г тория-232 (именно они используются в качестве сырья в бридерах). При потреблении энергии 5 * 108 МВт (на два порядка выше, чем сейчас) запаса урана и тория в граните хватит на 109 лет. Первый опытно-промышленный реактор на быстрых нейтронах мощностью до 350 МВт построен в г. Шевченко на берегу Каспийского моря. Он производит электроэнергию и опресняет морскую воду, обеспечивая пресной водой город и прилегающие район нефтедобычи с численностью населения около 150000 человек.

Колоссальной  энергией обладает термоядерный синтез. При термоядерном синтезе выделяемая энергия на один нуклон значительно больше, чем в реакции деления тяжелых ядер. При делении ядра урана 238 высвобождается энергия около 0,84 МэВ на один нуклон, а при термоядерном синтезе дейтерия и трития – примерно 3,5 МэВ. Термоядерные реакции дают наибольший выход энергии на единицу массы "горючего", чем любые другие превращения. Например, по энергетической емкости количество дейтерия в стакане простой воды эквивалентно приблизительно 60 л бензина. В этой связи весьма заманчива перспектива осуществления управляемого термоядерного синтеза.

Трудность практической реализации управляемого термоядерного  синтеза заключается в том, что он возможен только при очень высокой температуре – 107-108 К. При такой сверхвысокой температуре любое синтезируемое вещество находится в плазменном состоянии, и возникает техническая проблема удержания горячей плазмы в ограниченном объеме.

Впервые искусственная  термоядерная реакция осуществлена в СССР в 1953 г., а затем через  полгода в США в виде взрыва водородной (термоядерной) бомбы, представляющего неуправляемую реакцию синтеза. Взрывчатое вещество в водородной бомбе представляет собой смесь дейтерия и трития. Запалом в ней служит обычная атомная бомба, при взрыве которой возникает сверхвысокая температура, необходимая для синтеза легких ядер.

Над решением проблемы управляемого термоядерного синтеза  усердно работают ученые многих стран  в течение нескольких последних  десятилетий. Один из путей решения  данной проблемы – это удержание  горячей плазмы в ограниченном объеме сильными магнитными полями. Для этого  создаются сложнейшие в техническом  исполнении термоядерные реакторы. Один из первых таких реакторов – Токамак-10 – был собран в 1975г. в Институте  атомной энергии им. И.В. Курчатова.

Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой кладовой ядерной  энергии, заключенной в легких элементах. Извлечение энергии возможно из дейтерия, содержащегося в обычной воде. Расчеты показывают, что количество дейтерия в Мировом океане составляет примерно 4 * 1013 т, что соответствует энергетическому запасу 1017 МВт/год, который можно считать практически неограниченным. Остается только надеяться, что проблема управляемого термоядерного синтеза в недалеком будущем будет успешно решена.

 

          3. Радиоактивное воздействие на биосферу

 

В текущем столетии в связи с активной деятельностью  человека, связанной с производством ядерного оружия и бурным развитием атомной энергетики, появился новый вид воздействия на биосферу – радиоактивный. Если раньше радиоактивное воздействие можно было считать несущественным: радиоактивные источники были спрятаны природой в относительно недоступных местах для живого мира, то в последнее десятилетие в связи с добычей и обогащением ядерных материалов в крупных масштабах радиоактивное воздействие на биосферу стало представлять серьезную экологическую опасность.

Слова "радиоактивное  излучение" "радиоактивность" и "облучение" вошли в жизнь  послевоенных поколений и до наших  дней неразрывно связаны с первым и увы! кошмарным применением внутриядерной энергии – атомными бомбардировками Хиросимы и Нагасаки. Хотя исход Второй мировой войны был предрешен и японский генералитет уже обсуждал порядок капитуляции перед союзниками, Соединенные Штаты совершили варварский акт, продемонстрировав чудовищную мощь ядерного оружия.

При взрывах  атомных бомб более 100 тыс. японцев  погибли практически мгновенно, пораженные световой и ударными волнами. Десятки тысяч выживших в момент взрыва подверглись действию проникающих излучений и скончались в течение нескольких дней и недель от острой лучевой болезни, вызванною переоблучением и отягощенной травмами и обширными ожогами кожи. В результате взрывов атомных бомб погибло около 160 тыс. жителей Хиросимы и 70 тыс. жителей Нагасаки. В течение последующих 30 лет (1947-1976 гг.) от лучевой болезни скончалось еще около 90 тыс. человек. По прогнозам в дальнейшем жертвами отдаленных последствий переоблучения окажутся еще 360 тыс. человек.

По данным профессора Джозефа Ротблата, английского специалиста  по радиационной биологии, в Хиросиме за пять лет после взрыва бомбы  умерло втрое больше людей, чем при  взрыве. Они погибли от совместного  действия ожогов, травм и облучения.

Взрыв одного из четырех блоков Чернобыльской АЭС  в ночь на 26 апреля 1986 г. не разрушил ни одного жилого дома и даже не остановил сразу работу самой АЭС. Но через 10 лет после этой аварии опустошенные эвакуацией города и деревни прилегающих к Чернобылю районов Украины и Белоруссии по-прежнему остаются пустыми. Жить на этой территории, превышающей 1000 км2 и сильно загрязненной радионуклидами, будет нельзя еще 300-400 лет. Здесь будут работать лишь экологи и генетики, изучая влияние разных уровней хронической радиации на растения и животных. По подсчетам экспертов "цена" чернобыльской аварии за 10лет составила около 200 млрд. долларов. Но это лишь расходы и потери первого десятилетия. Прямой эффект чернобыльской аварии был крайне тяжелым. Десятки людей погибли от острой лучевой болезни. Многие жители были переоблучены и их здоровью нанесен существенный ущерб.

В России, на Украине, в Восточной и Западной Европе, США в последние 10 лет не было начато строительство ни одной новой АЭС. Однако продолжали достраивать реакторы, которые были уже близки к завершению. Естественно, что их проекты модифицировались. В СССР в 1989-1990 гг. из-за усилившейся антиядерной пропаганды остановилось и такое строительство, хотя это означало замораживание уже задействованных огромных инвестиций. После распада СССР Россия возобновила работы по вводу в действие реакторов, строительство которых было почти завершено к 1986 г. В 1993 г. был введен в действие четвертый реактор ВВЭР-1000 на Балаклавской АЭС. Возобновились работы по завершению строительства третьего реактора ВВЭР-1000 на Калининской АЭС и пятого реактора РБМК-100 на Курской АЭС.

Армения, лишенная всех источников органического топлива, решила реактивировать Армянскую АЭС, закрытую после землетрясения в 1988 г. Серьезное преобразование этой АЭС, состоящей из двух блоков ВВЭР-440, финансировалось армянской диаспорой. Введение одного из этих реакторов  в эксплуатацию в декабре 1995 г. отмечалось как национальный праздник. Ослабли  антиядерные настроения и в независимой  Украине.

В нашем лексиконе  появились термины "острая лучевая  болезнь", "отдаленные последствия облучения", тревожно звучащее слово "радиация". Раньше эти термины применялись преимущественно в узком круге специалистов, занимающихся разработкой способов использования атомной энергии в первую очередь для мирных целей. Вряд ли найдется человек, который не слыхал бы об успешном применении облучения в терапии опухолей, при стерилизации продуктов питания и медицинских препаратов, для предпосевной стимуляции семян и в других отраслях человеческой деятельности вплоть до криминалистики и искусствоведения.

И все-таки у  многих, если не у большинства, при  слове "радиация" возникает тревожное состояние, иногда называемое атомным синдромом, означающим болезненное состояние психики. Авария на ЧАЭС – не только разрушение блока, но и взрыв (без преувеличения) всеобщего интереса к проблеме действия излучения на живые организмы, в первую очередь на человека, а также к тому процессу, который называется облучением. В печати, по радио, на телевидении замелькали ранее применявшиеся только в специальной литературе термины – "дозиметрия" и "радиобиология", специальные единицы – рентгены, рады, бэры, а иногда даже такие экзотические, как грэй, зиверт. Большой выброс радиоактивных веществ из аварийного блока и в связи с этим возникшая необходимость введения радиометрического контроля в районах, прилегающих к 30-километровой эвакуированной зоне, вовлекла в круг практической дозиметрии много лиц, ранее не соприкасавшихся с проблемами радиоактивности измерений. Незнание количественных критериев радиационной опасности, а также неумелое применение средств защиты привели к ряду ошибочных действий. По этой же причине серьезными ошибками пестрят многочисленные послеаварийные сообщения.

Один из важных уроков из аварии в Чернобыле состоит  в том, что изучение основ дозиметрии ионизирующих излучений и радиационной биологии – неотъемлемый элемент современной цивилизации и культуры. Нам известны многие виды излучений, которые могут взаимодействовать с облучаемой средой, не обязательно вызывая ионизирующее действие. Одно из них всем хорошо знакомо – вспомним последствия длительного пребывания летом на ярком солнце. Ожог (иногда второй степени!) – следствие переоблучения кожи в результате воздействия инфракрасного излучения на клетки эпидермиса (верхнего слоя кожи), тогда как загар – воздействие более глубоко проникающего ультрафиолетового излучения на пигмент в составе подкожной клетчатки.

Отмеченное в  последние годы ослабление слуха  у подростков – следствие акустического переоблучения различного рода аудиотехникой. Причина выявленной в годы Второй мировой войны анемии у операторов мощных радиолокаторов – воздействие чрезвычайно больших доз сверхвысокочастотного электромагнитного излучения. Одна из существующих в современной биофизике гипотез связывает акселерацию людей в послевоенные годы с переоблучением населения Земли вездесущими радиоволнами.

Не множа число  таких примеров, уточним основную цель – количественно обосновать безопасные и допустимые уровни воздействия на живые организмы и оценить степень опасности облучения человека.

 

 

4. Проблема радиоактивных отходов

 

Большое сосредоточение радиоактивных материалов находится  на Севере Европейской территории России вблизи баз Северного флота (районы Мурманска и Архангельска) и на Новой Земле. Суммарная количественная оценка этих скоплений отсутствует. Подвергается опасности радиоактивного загрязнения по существу весь Арктический регион России. Здесь эксплуатируется более 170 ядерных энергоблоков, базируется самый мощный в мире атомный ледокольный флот, расположен полигон испытаний ядерного оружия, производятся подземные ядерные взрывы в мирных целях.

Обоснованные  опасения вызывают не санкционированные  на международном уровне захоронения РАО на дне морей, а также затонувшие корабли с ядерными реакторами и ядерным оружием на борту. Количество РАО, затопленных в морях региона, составляет 2/3 от активности всех отходов, захороненных в Мировом океане.

На территории России действуют девять АЭС с  реакторами РБМК (чернобыльского типа) и ВВЭР. Проверки, производимые по стандартам Международного агентства по атомной  энергии (МАГАТЭ), показывают, что все  станции находятся в удовлетворительном состоянии. Однако специалисты считают, что в ближайшее время может начаться остановка реакторов, поскольку многие из них уже исчерпали значительную часть своего ресурса. Каждый год на АЭС и других радиационно опасных объектах случаются инциденты, которые квалифицируются по международной шкале аварий и событий, в основном, как "происшествия" (незначительные, средней тяжести, серьезные).

Одна из наиболее острых экологических проблем в  стране – проблема радиоактивных  отходов. Об истинных ее масштабах стало  известно в 1993 г., когда под руководством природоохранных органов был  составлен государственный регистр мест и объектов добычи, переработки, использования, хранения и захоронения радиоактивных веществ, РАО, источников ионизирующих излучений. Только на предприятиях Минатома России (ПО "Маяк", Сибирский химический комбинат, Красноярский горно-химический комбинат) сосредоточенно 600 млн. м3 РАО с суммарной активностью 1,5 млрд. Ки. На 29 энергоблоках АЭС хранится 140 тыс. м3 жидких и 8 тыс. м3 отвержденных отходов общей активностью 31 тыс. Ки, а также 120 тыс. м3 излучающих твердых отходов (оборудование, строительный мусор). Ни одна АЭС не имеет полного комплекта установок для подготовки отходов к захоронению. Поставщиками РАО являются также Военно-морской флот (ВМФ), атомный ледокольный флот, судостроительная промышленность, предприятия неядерного цикла (НИИ, промышленные предприятия, медицинские учреждения, учебные заведения). На их долю приходится 240 тыс. м3 отходов с активностью более 2 млн. Ки.

Переработка отработавшего  ядерного топлива (ОЯТ) и захоронение  РАО – одна из наиболее сложных  технологических стадий ядерного топливного цикла. На предприятиях Минатома, Минтранса и ВМФ России хранится 7800 т ОЯТ с общей активностью 3,9 млрд. Ки. ОЯТ АЭС с реакторами типа РБМК в настоящее время не перерабатывается, а ОЯТ от реакторов ВВЭР транспортируется в специальное хранилище с перспективой последующей переработки на строящемся заводе РТ-2 Горно-химического комбината в г. Железногорске Красноярского края. Однако строительство этого завода вызывает протесты экологической общественности, поскольку существующая технология регенерации ОЯТ связана с образованием большого количества жидких РАО разной степени активности. Наибольшее возражение вызывает решение о возможности приема для временного хранения с целью последующей переработки ОЯТ с зарубежных АЭС.

Информация о работе Ядерная энергетика и экология