Энерго-сырьевая проблема Казахстана

Автор работы: Пользователь скрыл имя, 02 Июня 2015 в 15:23, реферат

Краткое описание

Использование сырьевых ресурсов на нашей планете растет значительными темпами. Нерациональное использование сырья, неравномерное распределение ресурсов среди различных регионов стран мира, их производство и потребление и дальше будут увеличиваться.
Понятие и причины сырьевой проблемы
Сырьевая проблема - глобальная проблема обеспечения человечества сырьем. Проблема вызвана следующими факторами:
* истощением разрабатываемых месторождений угля, нефти, железных и других руд;
* ограниченностью разведанных запасов нефти и природного газа;

Содержание

Введение
Понятие и причины сырьевой проблемы
Энерго -сырьевая ситуация в современном мире
Пути решения сложившейся проблемы
Заключение
Список использованных источников и литературы

Прикрепленные файлы: 1 файл

Энерго-сырьевая проблема. (Щеглова А. К-102.docx

— 36.81 Кб (Скачать документ)

За последние два десятилетия человечество вычерпало из недр более 60 млрд. т нефти. Если в 1977 году запасы оценивались в 90 млрд. т, то в 1987 г. уже в 120 млрд., а к 1997 году увеличились еще на два десятка миллиардов. Ситуация парадоксальна: чем больше добываешь, тем больше остается. Между тем этот геологический парадокс вовсе не кажется парадоксом экономическим. Ведь чем выше спрос на нефть, чем больше ее добывают, тем большие капиталы вливаются в отрасль, тем активнее идет разведка на нефть, тем больше людей, техники, мозгов вовлекается в разведку и тем быстрее открываются и описываются новые месторождения. Кроме того, совершенствование техники добычи нефти позволяет включать в состав запасов ту нефть, наличие ( и количество ) которой было ранее известно, но достать которую было нельзя при техническом уровне прошлых лет. Конечно, это не означает, что запасы нефти безграничны, но очевидно, что у человечества есть еще не одно десятилетие, чтобы совершенствовать энергосберегающие технологии и вводить в оборот альтернативные источники энергии.

При существующих способах добычи нефти коэффициент её извлечения колеблется в пределах 0.25 - 0.45, что явно недостаточно и означает, что большая часть её геологических запасов остаётся в земных недрах.

Электроэнергетика

Энергетика - это основа промышленности всего мирового хозяйства. Приблизительно 1/4 всех потребляемых энергоресурсов приходится на долю электроэнергетики. Остальные 3/4 приходятся на промышленное и бытовое тепло, на транспорт, металлургические и химические процессы. Ежегодное потребление энергии в мире приближается к 10 млрд. т условного топлива, а к 2009 году оно достигнет, по прогнозам экспертов 20-27 млрд. т.

Теплоэнергетика в основном твердое топливо. Самое распространенное твердое топливо нашей планеты - уголь. И с экологической и с экономической точки зрения метод прямого сжигания угля для получения электроэнергии не лучший способ использования твердого топлива.

Энергетика является основой развития производственных сил в любом государстве. Энергетика обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики.

Энергетическая промышленность является частью топливно-энергетической промышленности и неразрывно связана с другой составляющей этого гигантского хозяйственного комплекса - топливной промышленностью

Одним из самых перспективных, на данный момент, методов решения энергетической проблемы- это использование альтернативных видов электроэнергии.

Энергия рек

Многие тысячелетия, верно, служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода - ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье - в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Можно считать, что современная гидроэнергетика родилась в 1891 году.

Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале XX века было построено всего несколько гидроэлектростанций.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное кол-во энергии.

 

Атомная энергия

Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что в 21 веке около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто - в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Самый распространенный в настоящее время тип реактора водографитовый.

Но все 450 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.

Часть2. Пути решения сложившихся проблем

Пути решения сырьевой и энергетической проблемы

снижение объёмов

добычи

использование

альтернативных

источников энергии

пути решения

увеличение КПД

добывания и производства

Снижение объёмов добычи очень проблематично, т.к. современному миру нужно всё больше и больше сырья и энергии, а их сокращение непременно обернётся мировым кризисом. Увеличение КПД т.ж. малоперспективен т.к. для его осуществления требуются большие капиталовложения, да и сырьевые запасы небезграничны. Поэтому приоритет отдаётся альтернативным источникам энергии.

Альтернативные источники энергии

Энергия солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % - полностью покрыть потребности на перспективу.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е.Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки - привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Маленькая европейская страна Исландия - "страна льда" в дословном переводе - полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины-360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Энергия мирового океана

Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10 Дж. Однако пока что люди умеют утилизовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Однако происходящее весьма быстрое истощение запасов ископаемых топлив, использование которых к тому же связано с существенным загрязнением окружающей среды, резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии в Мировом океане. Широкая общественность, да и многие специалисты еще не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими.

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС). С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВтч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека - потребителя достаточно одного гектара плантаций водорослей.

Большое внимание приобрела "океанотермическая энергоконверсия" (ОТЭК), т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний. В какой-то мере аналогичными, но как пока кажется, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной, например морской и речной водой.

Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.

Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время. Вместе с тем следует ожидать, что творческий энтузиазм, искусство и изобретательность научно-инженерных работников улучшить существующие и создадут новые перспективы для промышленного использования энергетических ресурсов Мирового океана. Думается, что при современных темпах научно-технического прогресса существенные сдвиги в океанской энергетике должны произойти в ближайшие десятилетия. Океан наполнен внеземной энергией, которая поступает в него из космоса. Она доступна и безопасна, и не загрязняет окружающую среду, неиссякаема и свободна.

Из космоса поступает энергия Солнца. Она нагревает воздух и образует ветры, вызывающие волны. Она нагревает океан, который накапливает тепловую энергию. Она приводит в движение течения, которые в то же время меняют свое направление под воздействием вращения Земли.

Информация о работе Энерго-сырьевая проблема Казахстана