Экология опыления цветковых растений

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 23:36, контрольная работа

Краткое описание

С начала весны и до поздней осени цветут различные растения. Цветки растений различны по строению, форме, величине и окраске венчика. У одних они одиночные, у других – собраны в соцветия.
После цветения развиваются плоды. В плодах созревают семена. Плоды и семена образуются лишь из тех цветков, в которых произошло опыление и оплодотворение.
Опылением называется перенос пыльцы с тычинок на рыльце пестика.

Прикрепленные файлы: 1 файл

СРС по экологии.docx

— 194.35 Кб (Скачать документ)

Это закон учитывается в практике сельского хозяйства. Немецкий химик  Юстус Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция — 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

По имени учёного названо  образное представление этого закона — так называемая «бочка Либиха». Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке и длина остальных досок уже не имеет значения.

Закон толерантности Шелфорда — закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме.

Закон толерантности расширяет  закон минимума Либиха.

Если в среде, являющейся совокупностью  взаимодействующих факторов, есть такой  фактор, значение которого меньше определенного  минимума или больше определенного  максимума, то проявление активной жизнедеятельности  организма в этой среде невозможно.

Минимальное и максимальное значения этого фактора выступают в роли ограничивающих (лимитирующих). Расстояние между двумя пессимумами - зона толерантности.

Толерантность - выносливость вида по отношению к колебаниям какого-либо экологического фактора. Толерантные  виды - виды, устойчивые к неблагоприятным условиям среды.

Закон толернатности был дополнен в 1975г Ю.Одумом.

Организмы могут иметь широкий  диапазон толерантности в отношении  одного фактора и узкий диапазон в отношении другого.

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены

Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может  сузиться и в отношении других экологических факторов (например, если содержание азота в почве  мало, то требуется больше воды для  злаков)

Диапазоны толерантности к отдельным  факторам и их комбинациям различны.

Период размножения является критическим  для всех организмов, поэтому именно в этот период увеличивается число  лимитирующих факторов.

5. Биологи́ческая адапта́ция (от лат. adaptatio — приспособление) — процесс приспособления организма к внешним условиям в процессе эволюции, включая морфофизиологическую и поведенческую составляющие. Адаптация может обеспечивать выживаемость в условиях конкретного местообитания, устойчивость к воздействию факторов абиотического и биологического характера, а также успех в конкуренции с другими видами, популяциями, особями. Каждый вид имеет собственную способность к адаптации, ограниченную физиологией (индивидуальная адаптация), пределами проявления материнского эффекта и модификаций, эпигенетическим разнообразием, внутривидовой изменчивостью, мутационными возможностями, коадаптационными характеристиками внутренних органов и другими видовыми особенностями.

Приспособленность живых существ  к естественным условиям внешней  среды была осознана людьми ещё в  античные времена. Вплоть до середины XIX века это объяснялось изначальной  целесообразностью природы. В теории эволюции Чарлза Дарвина было предложено научное объяснение адаптационного процесса на основе естественного отбора.

Адаптации видов в рамках одного биоценоза зачастую тесно связаны  друг с другом[1] (одним из наиболее поразительных примеров межвидовой коадаптации является жёсткая привязка строения органов некоторых видов цветковых растений и насекомых друг к другу с целью опыления и питания). Если адаптационный процесс у какого-либо вида не находится в равновесном состоянии, то эволюционировать может весь биоценоз (иногда — с негативными последствиями) даже в стабильных условиях окружающей среды.

Примеры

Возникновение устойчивости к пенициллину. Некоторые бактерии "выработали стойкость" к пенициллину. Эта  фраза отражает ламарковское понимание возникновения адаптации. На самом деле механизм "выработки" стойкости сложный и длительный, это не привыкание. Постоянно происходит мутирование генов у всех организмов. Ген, контролирующий синтез фермента пенициллиназы, расщепляющего пенициллин, мутирует с частотой 4х107. Эти мутации были и до пенициллиновой эпохи.

Применение малых доз антибиотика  вначале пятидесятых годов XX столетия не вызывало 100-процентную гибель бактерий. Выжившие мутанты продолжали жить и размножаться. Увеличение дозы препарата при лечении тоже не привело к полной гибели возбудителей. Несколько выживших возбудителей оказались способными размножаться и в этих условиях. Нынешние, устойчивые к пенициллину бактерии - это потомки пенициллиноустойчивых мутантов. Заражение, для ликвидации которого в 1948 г. требовалось 100 тысяч единиц пенициллина, через 30 лет требовало удесятеренной дозы.

Возникновение устойчивости мух к  ДДТ. В качестве инсектицида в  борьбе с домовой мухой применяли  ДДТ. Яд не отравляет муху, он действует  на ацетилхолинэстеразу — фермент, участвующий в передаче нервных импульсов в синапсах. ДДТ инактивирует фермент, и он перестает расщеплять ацетилхолин нахолин и уксусную кислоту. В результате инактивации фермента импульсы, идущие по двигательным нервам, вызывают множественное мышечное сокращение. Это приводит к "сжиганию" всех резервных веществ. И муха гибнет. Время от времени у домовой мухи в результате спонтанного мутагенеза возникает мутация в генах, контролирующих образование ацетилхолинэстеразы. Такие мутанты имеют сниженную скорость ингибирования фермента ядом. Эта особенность, а также мутации в 6 аллелях других локусов обеспечивают дезинтоксикацию инсектицида. Домовая муха стала устойчивой к ДДТ через 3 года.

Питание. Все растения и животные должны получать из окружающей среды  энергию и различные вещества, прежде всего кислород, воду и неорганические соединения. Почти все растения используют энергию Солнца, трансформируя ее в процессе фотосинтеза (см. также ФОТОСИНТЕЗ). Животные получают энергию, питаясь растениями или другими животными.

Каждый вид определенным образом  приспособлен к тому, чтобы обеспечивать себя питанием. Ястребы имеют острые когти для захватывания добычи, а  расположение глаз в передней части головы позволяет им оценить глубину пространства, что необходимо для охоты при полете на большой скорости. У других птиц, например цапель, развились длинные шея и ноги. Они добывают пищу, осторожно бродя по мелководью и подстерегая зазевавшихся водных животных. Дарвиновы вьюрки – группа близкородственных видов птиц с Галапагосских островов – представляют классический пример высокоспециализированной адаптации к разным способам питания. Благодаря тем или иным адаптивным морфологическим изменениям, в первую очередь в строении клюва, одни виды стали зерноядными, другие – насекомоядными.

Если обратиться к рыбам, то хищники, например акулы и барракуды, имеют  острые зубы для поимки добычи. Другие, например мелкие анчоусы и сельди, добывают мелкие частицы пищи путем  фильтрации морской воды через гребневидные жаберные тычинки.

Защита. Окружающая среда состоит  из живых и неживых компонентов. Живое окружение любого вида включает животных, питающихся особями этого  вида. Адаптации хищных видов направлены на эффективную добычу пищи; виды-жертвы приспосабливаются, чтобы не стать  добычей хищников.

Многие виды – потенциальные  жертвы – имеют защитную или маскирующую  окраску, которая скрывает их от хищников. Так, у некоторых видов оленей пятнистая шкура молодых особей незаметна на фоне чередующихся пятен света и тени, а зайцев-беляков трудно различить на фоне снежного покрова. Длинные тонкие тела насекомых-палочников тоже трудно увидеть, потому что они напоминают сучки или веточки кустов и деревьев.

У оленей, зайцев, кенгуру и многих других животных развились длинные  ноги, позволяющие им убегать от хищников. Некоторые животные, например опоссумы и свиномордые ужи, даже выработали своеобразный способ поведения – имитацию смерти, которая повышает их шансы на выживание, поскольку многие хищники не едят падали.

Некоторые виды растений покрыты шипами или колючками, отпугивающими животных. Многие растения имеют отвратительный для животных вкус.

Факторы окружающей среды, в частности  климатические, нередко ставят живые организмы в трудные условия. Например, животным и растениям часто приходится приспосабливаться к крайним значениям температуры. Животные спасаются от холода, используя изолирующий мех или перья, мигрируя в места с более теплым климатом или впадая в зимнюю спячку. Большинство растений переживает холода, переходя в состояние покоя, эквивалентное спячке у животных.

В жару охлаждение животного происходит за счет потоотделения или частого  дыхания, увеличивающего испарение. Некоторые  животные, в особенности пресмыкающиеся и

6. АЛЛЕНА ПРАВИЛО, отражает закономерность  изменения размеров поверхности тела гомойотермных (теплокровных) животных с изменением климатических условий. Согласно правилу Аллена, у животных, населяющих более холодные участки ареала, выступающие части тела (конечности, хвост, ушные раковины и т. д.) меньше, чем у представителей того же вида (или близких видов) из более тёплых местностей. Установлено Дж. Алленом (1877). Правило Аллена, как и правило Бергмана, вытекает из принципа уменьшения теплоотдачи при сокращении отношения поверхности тела к объёму. Исключения из правила Аллена довольно часты (например, длина клюва у птиц обычно связана с характером питания).

Большинство закономерностей, наблюдаемых  в мире растений и животных, прямо  следуют из теории эволюции, и правило  Аллена — не исключение. Теплокровные животные, как и человек, имеют внутренний механизм, поддерживающий температуру тела на постоянном уровне. По сути, эти животные преобразуют энергию пищи в тепло для поддержания постоянной температуры своего тела.

Тепло переносится из внутренних органов  теплокровных животных к более прохладной поверхности тела, откуда рассеивается в окружающую среду. Это потерянное тепло животному нужно снова  выработать в процессе обмена веществ (метаболизма), а значит, в его же интересах, чтобы потери тепла были минимальными. Поэтому полярные животные имеют толстый слой меха или подкожного жира для теплоизоляции и уменьшения выноса тепла на поверхность.

Ясно, что чем меньше площадь  поверхности, соприкасающейся с  внешней средой, тем меньше тепла будет улетучиваться при данной температуре окружающей среды. Возьмем в качестве наглядного примера относительные пропорции конечностей овцебыка и жирафа (овцебык приспособлен к холодному климату, а жираф — к жаркому). Короткие ноги овцебыка в условиях холодного климата — эволюционное приспособление: уменьшается поверхность, с которой уходит тепло.

Правило Аллена иллюстрирует известные  законы физики. Вырабатываемое внутри теплокровных животных тепло переходит  в окружающую среду (см. Теплообмен), где температура ниже (см. Второе начало термодинамики; Закон Стефана—Больцмана), а оттуда оно улетучивается путем излучения или конвекции. Количество вырабатываемого тепла зависит от объема животного, а количество тепла, уходящего в окружающую среду, зависит от площади поверхности животного. Поэтому чем компактнее животное — или, выражаясь научно, чем меньше отношение поверхности к объему, — тем меньше будут потери тепла и тем больше тепла сохранится. Так что адаптивная ценность низкого отношения поверхности к объему в северном климате очевидна.

Правило Бергмана

У эндотермных животных общая теплопродукция зависит от объема тела, а скорость теплоотдачи — от площади его поверхности. При увеличении размеров организмов объем тела растет быстрее, чем его поверхность. По этой причине виды, живущие в холодных регионах (например, белые медведи и киты), имеют, как правило, крупные размеры, тогда как обитатели жарких стран (например, многие насекомоядные млекопитающие) обычно меньше по размерам. Это явление, известное как правило Бергмана, наблюдается и в пределах одного вида: например амурская форма тигра с Дальнего Востока крупнее суматранской из Индонезии. Конечно, и в приполярных областях водятся мелкие животные, а в тропиках — настоящие гиганты, но в этих случаях у них наблюдаются дополнительные приспособления для сохранения или рассеивания тепла. Например, мелкие млекопитающие умеренных или приполярных зон отличаются колоссальным аппетитом, позволяющим им поддерживать высокую интенсивность метаболизма. У них короткие выступающие части тела (уши, конечности), что уменьшает теплоотдачу, а зимой они вынуждены впадать в спячку. Крупные млекопитающие жарких стран, такие как слоны и бегемоты, сталкиваются с противоположными проблемами. Слонам помогают очень большие уши, обильно снабжаемые кровью. Постоянно шевеля ушами, слон увеличивает теплоотдачу путем излучения и конвекции. Бегемоты лишены потовых желез, и они используют такую же поведенческую стратегию, как крокодилы, — перемещаются то на сушу, то в воду, чтобы уменьшить влияние колебаний температуры. В отношении человека правило в определенной степени применимо, однако из-за различий в местных диетах и обычиях, миграции и дрейфа генов между популяциями накладываются ограничения на применимость этого правила.

ПРАВИЛО ПОВЕРХНОСТЕЙ , правило, сформулированное Ш. Рише (1899) и М. Рубнером (1902), согласно к-рому отношение продуцируемого тепла к единице поверхности тела (в м2) большинства гомойотермных животных выражается приблизительно одинаковыми величинами (порядка 1000 ккал/24 ч). Эмпирически доказано, что средняя величина теплопродукции, к-рую можно оценивать по количеству потребляемого кислорода, связана с величиной теплоотдачи; последняя тем больше, чем меньше животное. В связи с тем, что масса (объем) растет пропорционально кубу, а поверхность — лишь квадрату поперечника (диаметра), у мелких животных на единицу массы приходится относительно большая поверхность, нежели у крупных. В связи с этим относительная отдача тепла в окружающую среду мелкими животными выше, что и компенсируется увеличенной теплопродукцией. В экологии и биогеографии П. п. связывают с правилом Бергмана.

Чтобы в цветках образовались семена и плоды, необходимо опыление (перенос пыльцы на рыльце пестика) и оплодотворение (слияние мужских и женских половых клеток). Более здоровое потомство получается при перекрестном опылении, когда пыльца с одного цветка или растения попадает на рыльце другого.

Информация о работе Экология опыления цветковых растений