Биологическая очистка. Общие сведения

Автор работы: Пользователь скрыл имя, 29 Марта 2014 в 13:05, реферат

Краткое описание

В 1833-1834 гг. Сорби и Дюпре показали, что процессы самоочищения в реке связаны с жизнедеятельностью микроорганизмов. Это открытие в биологии позволило химику Дибдингу, работавшему в Лондоне вместе с Сорби и Дюпре, предсказать принципы и механизм обеспечения биологической очистки в первичных отстойниках и аэротенках. Дибдин записал в 1887 г.: «По всей вероятности, правильное направление в очистке сточной жидкости (при отсутствии подходящей почвы), состояло бы в том, что сначала выделить осадок, а затем к осветленной жидкости прибавить разводку специфических всевозможных организмов, специально культивируемых для этой цели, потом выдержать жидкость в течение достаточного времени, энергично ее аэрируя, и, наконец, спустить в реку в состоянии действительно очищенном».

Содержание

1. Введение. 2
2. Биологическая очистка. Общие сведения. 3
3. Биохимические основы методов биологической очистки сточных вод. 4
4. Принципы очистки сточных вод в аэротенках и основные характеристики активного ила. 11
5. Аэротенк, как основное сооружение биологической очистки. 20
6. Технологические схемы очистки сточных вод в аэротенках. 23
6.1. Схемы очистки сточных вод с окислением углеродных загрязнений, нитрификацией и денитрификацией. 23
6.2. Схемы очистки сточных вод с окислением углеродных загрязнений, нитрификацией, денитрификацией и дефосфотированием. 23
7. Станции биологической очистки сточных вод с нулевой эмиссией серии «МЕГАПОЛИС» разработки и производства ЗАО «Компания «ЭКОС». 29
7.1. Общие сведения 29
7.2. Описание технологической схемы очистки сточных вод. 32
8. Список литературы: 40

Прикрепленные файлы: 1 файл

реферат_Биологическая очистка.doc

— 7.77 Мб (Скачать документ)

IV - фазу  нулевого роста (или прекращения  роста), в которой наблюдается  практически стационарное состояние в количестве биомассы, свидетельствующее о равновесии между наличием питательных веществ и накопленной биологической массой;

V - фазу  эндогенного дыхания (или фазу  самоокисления), в которой из-за  недостатка питания начинаются  отмирание и распад клеток, ведущие к снижению общего количества биомассы в биологическом реакторе.

Из рис. 2 видно, что отмеченным фазам роста микробиальной массы соответствует и динамика изменения концентрации питательных веществ, выраженных через БПК, и, следовательно, можно сделать следующие весьма важные для технической реализации процесса заключения:

• при биологической очистке значительная часть загрязнений, содержащихся в сточных водах, трансформируется в биологическую массу или, иными словами, растворенные и инертные взвешенные органические вещества в результате метаболической активности микроорганизмов и сорбционной способности активного ила превращаются в биологическую массу, сравнительно легко отделимую от очищенной воды;

• длительность изъятия и окисления, содержащихся в сточной воде органических загрязнений будет тем короче, чем дольше масса микроорганизмов будет в контакте с ними;

• при падении содержания органических веществ в очищаемой жидкости ниже определенного предела жизнедеятельность микроорганизмов продолжается, но уже либо за счет накопленных питательных веществ, либо за счет их собственной массы, т.е. отмирания и окисления микроорганизмов со снижением общей их массы (процесс самоокисления).


 

 

 

 

 

 

 

 

Рис. 1. Зависимость прироста биомассы в аэробных условиях от концентрации питательных веществ.

Установлено, что микробиальная масса, подвергшаяся воздействию фазы самоокисления, будучи введена снова в контакт с питательной средой, восстанавливает свою прежнюю метаболическую активность со значительной задержкой по сравнению с биомассой, не подвергавшейся этому воздействию.

Хотя кривая роста, основанная на количественной оценке биомассы, вырастающей на питательных веществах, имеющихся в культуральной среде, дает хорошее представление о динамике превращения массы загрязнений в биологическую массу микроорганизмов, она не отражает физиологических изменений, происходящих в клетках на разных стадиях развития биомассы в целом.

Так, если в фазах II и III идет бурный рост биомассы, культура «омолаживается» и в ней преобладают новые клетки, то в фазе IV наблюдается равновесие между ростом живых и распадом отмерших клеток, а и фазе V наблюдается преобладание отмирания клеток над их ростом. Естественно, что физиологическое состояние клеток не остается постоянным и различных фазах роста биомассы и будет характеризоваться их различной метаболической активностью. Иными словами, возраст микробиальной культуры оказывает существенное влияние на скорость биохимических процессов, протекающих в биологическом реакторе, и его поддержание и определенном диапазоне позволит обеспечить оптимальные условия развития биомассы для достижения поставленных технологических параметров изъятия и окисления органических загрязнений из сточных вод, поступающих в аэрационное сооружение.

Необходимый возраст микробиальной культуры, ее высокая метаболическая активность и хорошая седиментационная способность достигается поддержанием лишь необходимого количества биомассы в аэрационном сооружении за счет выведения из него ее прироста и обеспечением соответствующей длительности контакта биомассы с загрязнениями.

Из вышесказанного следует, что соотношение между количеством питания и массой микроорганизмов в биологическом реакторе является важнейшей характеристикой, определяющей условия протекания в нем биохимических процессов. Применительно к аэрационным сооружениям эта характеристика получила название «нагрузки загрязнений на ил». Под ней принимается количество поступающих со сточной водой загрязнений, приходящееся на единицу массы ила в единицу времени. Выражается эта величина обычно в мг или г загрязнения (ХПК, БПК или любого другого загрязнения) на 1 г сухого вещества ила в 1 ч или в 1 сут. В последние годы нагрузку загрязнений считают не на 1 г сухого вещества ила, а на 1 г сухого зольного вещества ила, что в какой-то мере позволяет учитывать метаболическую активность ила. Это связано с тем, что в активном иле присутствует около 25-35% по массе минеральных веществ, не входящих в состав микробиальных клеток и не участвующих в биохимических процессах.

Следует отметить, что беззольное вещество ила также не выражает однозначно активную часть ила, поскольку в нем могут присутствовать накопленные, но не превращенные в живые микробиальные клетки органические беззольные вещества. В этой связи для количественного выражения "активной" биомассы делались попытки учета в ней концентрации дегидрогеназ, РНК и ДНК, которые, однако, не получили широкого практического применения для характеристики работы очистных сооружений.

Массу ила в аэрационном сооружении выражают через его концентрацию в иловой смеси в граммах сухого вещества ила в 1 л или в 1 м3 иловой смеси. Концентрацию активного ила, поддерживаемую в эксплуатационном режиме аэрационного сооружения, называют «дозой активного ила» или "рабочей дозой". Таким образом, среднюю нагрузку на активный ил, например, по загрязнениям, выраженным через БПК, можно представить:

     (4.1)

где - БПК поступающей в аэрационное сооружение сточной жидкости, мг/л или г/м3; s - зольность ила, доли единицы; - доза ила, выражаемая г/л, если БПК выражена в мг/л, и в г/м3, если БПК выражена в г/м; - длительность пребывания жидкости в аэрационном сооружении.

Тогда нагрузка на ил выразится в граммах поступающей БПК на 1 г беззольного вещества сухого ила в 1 ч.

Однако средняя нагрузка на ил еще не означает, что все поступившее в сооружение количество загрязнений будет изъято активным илом. В биологически очищенной сточной воде может оставаться количество загрязнений, зависящее от глубины очистки сточной воды. При полной биологической очистке после отделения активного ила это количество составляет 12-20 мг/л по БПКП0ЛН. Разница между поступающей в аэрационные сооружение и выходящей из него БПКП0ЛН называется снятой БПКП0ЛН. Ee отношение к массе ила и длительности аэрации - удельной скоростью изъятия загрязнений из очищаемой воды, т.е. скоростью очистки. Последнюю выражают в мг или г БПКП0ЛН на 1 г беззольного вещества ила в 1ч:

      (4.2)

Несмотря на аналогичность математического выражения нагрузки на ил и скорости изъятия загрязнений между этими параметрами имеется глубокое различие. Если нагрузка на ил носит скорее физический смысл и к определенной степени может иметь даже произвольный характер, то удельная скорость изъятия загрязнений отражает биохимическую сущность процесса потребления загрязнений и их окисления активным илом, находящимся в тех или иных конкретных технологических условиях (нагрузка ни ил тоже будет одним из этих условий). Удельная скорость изъятия загрязнений будет зависеть от химической природы этих загрязнений, их концентрации в сточной воде, нагрузки загрязнений на активный ил, требуемом глубины их изъятия, наличия веществ, угнетающих биохимические процессы, степени адаптированности активного ила к загрязнениям, подлежащим изъятию, температуры сточных вод, гидродинамических условий в аэрационном сооружении и пр. Иными словами, удельная скорость изъятия загрязнений - это то количество загрязнений, которое может быть снято 1 г беззольного вещества сухого ила в 1 ч в заданных условиях реализации процесса биохимической очистки. Значение этого параметра устанавливается экспериментальным путем. Средняя нагрузка на ил и удельная скорость очистки связаны между собой тем, что для конкретных заданных условий технологической реализации процесса наибольшая скорость потребления загрязнений при обеспечении требуемой глубины их изъятия достигается лишь при определенных нагрузках загрязнений на ил. Это означает, что если нагрузка на ил велика, то активный ил с ней не справится и требуемое качество очистки не будет обеспечено. Если же нагрузка на ил будет мала, то активный ил будет испытывать недостаток питания и, следовательно, «не дорабатывать», а в определенных границах недогрузки будет иметь место самоокисление активного ила и падение рабочей дозы ила в аэротенке.

Исходя из нагрузки на активный ил, аэротенк может быть охарактеризован как высоконагружаемый при нагрузках свыше 0,5 г БПКПОЛН на 1 г беззольного вещества сухого ила в сутки, имеющий среднюю нагрузку при в пределах 0,15-0,5 г БПКполн на 1 г беззольного вещества сухого ила в сутки и низконагруженный при в пределах 0,065-0,15 г БПКП0ЛН на 1 г беззольного вещества сухого ила в сутки. При нагрузках менее 0,065 г БПК на 1 г беззольного вещества ила имеет место так называемая «продленная аэрация», при которой происходит самоокисление определенного количества активного ила. С некоторой долей условности можно отметить, что в фазе II (см. рис. 2) будут иметь место высокие нагрузки на ил, в фазе III - средние нагрузки, в фазе IV - низкие нагрузки и в фазе V - недогрузка ила и его самоокисление.

Из формул (4.1) и (4.2) видно, что и средняя нагрузка на ил, и удельная скорость очистки могут поддерживаться на определенном уровне при соблюдении постоянства произведения , т.е. дозы ила на длительность его воздействия на загрязнения. Условно говоря, увеличивая дозу ила в сооружении и пропорционально сокращая длительность пребывания иловой смеси в аэрационном сооружении можно было бы соответственно уменьшить его объемы. Однако доза ила в аэрационном сооружении не может назначаться произвольно, и, следовательно, справедливость этого выражения носит весьма ограниченный характер. Как живая биологическая система активный ил требует определенного объема, что становится очевидным, если ил оставить в покое и дать ему возможность осаждения. В зависимости от таких факторов, как характер загрязнений, нагрузка на ил, доза ила, длительность отстаивания и пр., занимаемый илом объем изменяется в довольно широких пределах. Для возможности сравнения значений этого показателя, полученных при различных технологических режимах, найдено стандартизованное понятие илового индекса, представляющего собой объем, мл, приходящийся на 1 г сухого вещества активного ила после 30-минутного отстаивания иловой смеси. Значение илового индекса зависит от концентрации активного ила в иловой смеси, в связи с чем (при всей спорности этого подхода) некоторые специалисты считают целесообразным определять его значения именно при концентрации в 1 г сухого вещества в 1 л иловой смеси за счет ее разбавления водопроводной водой при большей концентрации или сгущения путем отстаивания при меньшей концентрации. Иловый индекс характеризует седиментационную способность активного ила, т.е. предрасположенность ила к оседанию. Поскольку после завершения процесса очистки воды (изъятия и окисления загрязнений из сточной воды) активный ил должен быть отделен от очищенной воды, то способность иловой смеси к разделению на очищенную воду и активный ил имеет весьма важное значение.

В большинстве применяемых в настоящее время систем очистки в аэротенках процесс отделения активного ила осуществляется гравитационным  путем, т.е. отстаиванием, при котором активный ил осаждается на дно отстойного сооружения и несколько уплотняется, после чего может быть возвращен в аэрационное сооружение. Если ил будет плохо осаждаться в отстойных сооружениях, то его вынос с очищенной водой ухудшает качество очищенной воды, а в некоторых случаях не позволяет поддерживать в аэрационном сооружении требуемую дозу активного ила. Иными словами, если попытаться установить произвольно высокую концентрацию ила в аэрационном сооружении, то при переходе иловой смеси в сооружение для отделения ила путем его осаждения последний будет постепенно выноситься вместе с очищенной водой, и в аэрационном сооружении установится концентрация активного ила, соответствующая иловому индексу для данных условий. Хорошо оседающий ил имеет иловый индекс от 60-90 до 120-150 мл/г в зависимости от технологического режима работы аэрационных сооружений и состава сточных вод. Как перегрузка, так и недогрузка активного ила по загрязнениям (помимо прочих факторов) приводят к резкому увеличению илового индекса, названном «вспуханием» ила, и повышенному выносу его с очищенной сточной водой. Следовательно, дозу ила следует рассматривать как оптимальную концентрацию активного ила в аэрационном сооружении, складывающуюся под воздействием различных факторов, характеризующих тот или иной технологический режим работы аэрационных сооружений, сооружений илоотделения и пр. В этой связи уместно говорить лишь о некоторых средних значениях дозы ила в аэрационных сооружениях,  отметив, что она может колебаться в пределах 3-5 г/л - при продленной аэрации 3-4 г/л - при низких нагрузках на ил; 2,5-3,5 г/л - при средних и 2-3 г/ л при высоких нагрузках.

В зависимости от характера загрязнений сточных вод, режима работы сооружения, системы аэрации, квалификации обслуживающего персонала и пр. реальные значения дозы ила в аэрационном сооружении могут значительно отклоняться от указанных величин.

Чем выше значение рабочей дозы ила в аэрационном сооружении, тем выше   окислительная   мощность   этого сооружения. Под ней понимается количество загрязнений, снимаемых в единицу времени   массой  активного  ила, находящейся в единице объема сооружения. Обычно окислительную мощность выражают в килограммах снятых загрязнений, приходящихся на 1 м сооружения в сутки  (иногда эту величину называют объемной нагрузкой на сооружение). Можно сказать, что окислительная мощность сооружения отражает его пропускную способность по массе загрязнений при обеспечении заданного или возможного для данных условий эффекта очистки.

Математическое выражение этой величины представляет собой произведение дозы ила (в пересчете на беззольное вещество) на скорость очистки, т.е.

 где  - БПКП0ЛН на 1 г беззольного вещества в 1 ч.

Окислительная мощность аэротенков может составлять от 0,3 кг БПКП0ЛН до 2-3 кг БПКП0ЛН на 1 м сооружения в зависимости от технологического режима его работы.

Повышение дозы ила в аэрационном сооружении и, соответственно, его окислительной мощности без ущерба для глубины очистки является в настоящее время одним из наиболее изучаемых направлений интенсификации работы аэрационных сооружений.

Еще одной важной характеристикой метаболической активности ила, отмечавшейся выше, является возраст ила, под которым понимается средняя продолжительность его пребывания в сооружениях биологической очистки. Поскольку часть потребляемых илом органических загрязнений идет на построение новых бактериальных клеток, активный ил развивается и его масса увеличивается. Это увеличение называется приростом ила и его, как и дозу ила, выражают в единицах концентрации, т.е. в мг/л или г/л. Экспериментально установлено, что в массу прироста ила включается около 25-30% снимаемой в сооружении БПКП0ЛН и около 75-80% поступивших в него взвешенных веществ. Поскольку в аэротенке может поддерживаться лишь определенная для данных условий концентрация ила, то прирастающая масса ила должна своевременно удаляться из системы биологической очистки. В противном случае она будет выноситься с потоком очищенной воды, ухудшая качество очистки. Эту массу ила, т.е. прирост ила, называют избыточным активным илом в отличие от массы ила, возвращаемой из сооружения илоотделения в аэрационный резервуар и получившей название циркуляционного активного ила. Постоянный прирост и удаление избыточного ила из системы биологической очистки постепенно обновляют иловую массу в аэрационном сооружении. Чем выше прирост ила, тем больше количество избыточного активного ила, и, следовательно, тем быстрее обновляется ил и тем меньше его возраст. Возраст ила, сут. может быть выражен формулой

Информация о работе Биологическая очистка. Общие сведения