Альтернативные источники энергии и возможность их использования в России

Автор работы: Пользователь скрыл имя, 15 Сентября 2013 в 19:16, курсовая работа

Краткое описание

Цель курсовой работы: изучить перспективы использования АИЭ на территории России.
Задачи:
Изучить виды АИЭ
Проанализировать ситуацию на мировом энергетическом рынке и выявить долю АИЭ в мировом энергетическом балансе
Выявить возможность использования АИЭ на территории России

Содержание

Введение

1. Классификация альтернативных источников энергии
2. Доля альтернативных источников энергии в Структуре энергетических ресурсов России и динамика их потребления
3. Альтернативные источники энергии и возможности их использования в России
3.1 Энергия ветра (ветровая энергетика)
3.2 Малая гидроэнергетика
3.3. Солнечная энергия
3.4 Энергия биомассы
3.5. Геотермальная энергия
3.6 Энергетические ресурсы морей и океанов
3.7 Использование низкопотенциального тепла в сочетании с тепловыми насосами
4. Политика России в области альтернативных источников энергии

Заключение

Список литературы

Прикрепленные файлы: 1 файл

0823193_8E273_alternativnye_istochniki_energii.doc

— 1.87 Мб (Скачать документ)

Рисунок 14. Динамика суммарных установленных мощностей солнечных модулей. Источник: INFOLine.

На  данный момент в мире работают тысячи фирм, производящих различные установки с ФЭП, но только десятки из них, в том числе в России, умеют делать солнечные элементы. Начиная с середины 90х годов, в России ведутся работы по усовершенствованию ФЭП и развертыванию их промышленного производства. Так, например, ООО «Солнечный Ветер» сотрудничает более чем с 10 странами. За 1996-2001гг объем продаж увеличился в десять раз (с 60 до 600 кВт/год), а в 2002 году превысил 1 МВт.

Однако, существует один существенный фактор сдерживающий распространение ФЭП. Это высокая стоимость электроэнергии, производимой ФЭП. Дороговизна обусловлена высокой стоимостью технологического процесса и основного материала (как правило, кремния высокой чистоты). Поэтому по всему миру ведутся исследования и разработки, направленные на удешевление ФЭП. Сейчас самым перспективным направлением является внедрение в ФЭП концентраторов солнечного излучения. Россия и США – те страны, в которых исследования в этой области проводятся наиболее интенсивно. [3]

 

    1. Энергия биомассы

 

По данным Associated Press энергия, вырабатываемая за счет биомассы, составляет около 12 % в мировом энергетическом балансе, однако официальной статистикой не учитывается биомасса, не являющаяся коммерческим продуктом, но используемая для энергетических нужд. В европейских странах, в среднем, вклад биомассы в энергетический баланс составляет около 3%, однако в таких странах, как Австрия, Швеция, Финляндия использование энергии биомассы доходит до 23%.

В энергетических целях энергию  биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Примерная схема получения энергии из биомассы представлена на рисунке 15. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение  получило производство спирта. [2]

Рисунок 15. Схема получения энергии из биомассы. Источник: [13].

Одно  из наиболее перспективных направлений  энергетического использования  биомассы – производство из неё  биогаза, состоящего на 50-80% из метана и  на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3 .  Например, опыты показывают, фермер, имеющий посевы рапса и рапсовое масло, может быть независимым от поставок моторного топлива . [9]

Крупномасштабное  увеличение  объема  производства биотоплива (например,  этилового  спирта)  по  этой  причине  может  оказать существенное  отрицательное  влияние  на  мировой рынок пищевых продуктов. Второй серьезный недостаток – возможность обеднения и эрозии почв в результате  интенсификации  выращивания «энергетических»  культур.  Очевидная стратегия спасения от этих явлений – выращивание культур, пригодных и для обеспечения человека (зерно), и для энергетических нужд при одновременном сокращении части урожая, скармливаемого животным. Для выращивания и переработки урожая необходима энергия в форме солнечного излучения и в форме, пригодной для получения топлива для работы сельхозмашин, создания самих этих машин, получения удобрения и т.п.  Для  оценки  эффективности  получения  энергии  из  того  или  иного  вида биомассы необходимо проведение энергетического анализа. [2]

Помимо первичной растительной биомассы, значительным энергетическим потенциалом обладают отходы животноводства, промышленные отходы и твердые бытовые отходы (ТБО). Мусороперерабатывающие фабрики либо сжигают ТБО, либо газифицируют их. Навоз и жидкие бытовые стоки являются основным сырьем от животноводства, которое перерабатывается в биогаз.

Рисунок 16. Схема устройства биогазовой установки. Источник: [13].

Наиболее эффективно производство биогаза из навоза. Из одной тонны  его можно получить 10-12  куб. м  метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома  злаковых  культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника,  из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др.

Биогаз можно конвертировать в  тепловую и электрическую энергию, использовать в двигателях внутреннего  сгорания для получения синтезгаза и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Установки по производству биогаза  размещают, как правило, в районе крупных городов, центров переработки  сельскохозяйственного сырья.

Широкое распространение энергия  биомассы получила в развивающихся странах. Так большинство из них расположено на территории Азии, Африки и Южной Америки.

Рисунок 17. Использование биомассы в качестве источника энергии в мире. Источник: [15].

В России образуется около 60 млн. т ТБО, примерно 130 млн. т отходов животноводства и птицеводства, около 10 млн. т сточных вод ежегодно. Энергетический потенциал этих отходов составляет 190 млн. т.у.т. Но используется лишь малая часть его. В этом направлении надо вести большую работу. Потому что, помимо пополнения запасов энергии, решается еще одна серьезная проблема России – экология. Ведь при переработке отходов мы сокращаем количество мусорных свалок и долин. [8]

Определенных успехов достигли отечественные ученые в области переработки жидких городских стоков. Уже с 50-х годов прошлого века на Курьяновской и Люберецкой станциях г. Москвы производится очистка городских стоков и работали мощные биогазогенераторы – метантенки. Этот метод переработки отходов начали повсеместно внедрять во многих городах России.

В основе биохимической переработки  отходов животноводства и птицеводства лежит анаэробное сбраживание. В  результате этого процесса органическая масса отходов определенными  штаммами бактерий превращается в биогаз. Обычный состав биогаза: до 70 % метана и 30 % диоксида углерода.

В данный момент в России разработкой, созданием, производством опытных серий оборудования, установок в целом, реализующих высокорентабельные биогазовые технологии, занимается ЗАО Центр «ЭкоРос». С 1997 года по документации ЗАО Центр «ЭкоРос» освоено производство таких установок в Китае в г. Ухань на совместном китайско-российском предприятии. Всероссийский Институт электрификации сельского хозяйства (ВИЭСХ) разрабатывает биоэнергетические установки для свиноферм;. ЗАО ВНИКОМЖ (Всероссийский Институт комплексной механизации животноводства) –создает биоэнергетические установки (БЭУ) для птицеферм и фабрик. Кафедра химической энзимологии МГУ им. Ломоносова создает технологию переработки супержидких стоков.[9]

С одной стороны Россия уже достигла серьезных успехов в области получения энергии из биомассы и промышленных отходов, но в то же время, нельзя останавливаться на достигнутом, потому что энергетический потенциал биомассы колоссален.

 

    1. Геотермальная энергия

 

Энергетика земли  (геотермальная энергетика) базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Так, например, маленькая европейская страна Исландия - "страна льда" в дословном переводе - полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли.[1]

Геотермальная энергия – это  энергия, получаемая за счет физического  тепла глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. Носителями этой энергии могут быть как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03 Вт/м2. Под воздействием этого потока, в зависимости от свойств горных пород, возникает вертикальный градиент температуры - так называемая геотермальная ступень. В большинстве мест она составляет не более 2–3К/100м. Но в местах молодого вулканизма, вблизи разломов земной коры геотермальная ступень повышается в несколько раз и уже на глубинах в несколько сот метров, а иногда нескольких километров, находятся либо сухие горные породы, нагретые до 100о С и более, либо запасы воды или пароводяной смеси с такими температурами.

Рисунок 18. Схема разреза Альпийского  нагорья с наличием геотермальных  электростанций. Источник: [15].

Считается, что если температура в геотермальном месторождении превышает 100о С, оно пригодно для создания геотермальной электростанции (ГеоЭС). При более низкой температуре геотермальный флюид целесообразно использовать для теплоснабжения. Если температура флюида для непосредственного теплоиспользования слишком низка, ее можно поднять, применяя тепловые насосы (ТН). [1]

На данный момент общая мощность всех действующих в мире ГеоЭС близится к 10 ГВт(э). Общая мощность существующих геотермальных систем теплоснабжения оценивается в 17 ГВт(т).

Россия чрезвычайно богата на запасы геотермальной энергии. По данным ИНЭИ РАН, они в10-15 раз превышают запасы органического топлива в стране. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30о до 200о С. На сегодняшний день на территории России пробурено около 4000 скважин на глубину до 5000 м, которые можно использовать для локального теплоснабжения при помощи высоких технологий на всей территории России. Так как скважины уже пробурены, геотермальная энергия, получаемая за счет них, будет экономически выгодной.

Рисунок 19. Технический потенциал использования геотермальной энергии в России. Источник: агентство по прогнозированию балансов в электроэнергетике.

В России наиболее перспективным регионом для строительства ГеоЭС является Камчатка, располагающая уникальными геотермальными месторождениями. Там действует Паужетская ГеоЭС мощностью 11 МВт(э), а также Кавказ. В 1999г. введены в эксплуатацию 3 блока по 4 МВт(э) Верхне-Мутновской ГеоЭС, начато строительство Мутновской ГеоЭС проектной мощностью 250 МВт(э). В развитие геотермальной энергетики Камчатки определяющий вклад вносит специально созданное для этой цели ОАО «ГЕОТЕРМ», Калужский турбинный завод, разработавший и освоивший в производстве современное специализированное оборудование, поставляемое не только на Камчатку, но и за рубеж. Имеется опыт теплоснабжения малых городов, поселков, тепличных комплексов и т.п. с использованием геотермального тепла, прежде всего, на Камчатке, Курилах и Северном Кавказе. Как перспективные для внедрения геотермального теплоснабжения рассматриваются Омская и Тюменская области, западная часть Новосибирской области и северная часть Томской области. Основные проблемы геотермального теплоснабжения связаны с солеотложением и коррозионной стойкостью материалов и оборудования, работающих в условиях агрессивной среды. В этой связи представляет большой практический интерес внедрение двухконтурных систем теплоснабжения с использованием эффективного и коррозионно-стойкого современного теплообменного оборудования.[10]

В России большое количество запасов термальных вод с довольно невысокой температурой, недостаточной для непосредственного теплоиспользования. Особый интерес представляет и тепло поверхностных слоев грунта, температура которых на глубине в несколько десятков метров круглый год остается практически неизменной и равна среднегодовой температуре воздуха в этом месте. Это означает, что зимой грунт может служить низкопотенциальным источником тепла для отопления с помощью тепловых насосов.

Активное использование геотермальных  ресурсов может оказывать неблагоприятное воздействие на окружающую среду. Основными негативными факторами являются: повышенный уровень шума на выходе из скважины; загрязнение водоемов при сбросе в них термальных вод с повышенным содержанием солей; загрязнение окружающего воздуха попутными газами (bhS, СН, NH4); тепловое загрязнение окружающей среды; повышение влажности воздуха за счет испарения в градирнях.

Во многих странах проводятся исследовательские  работы, направленные на очищение окружающей среды от последствий эксплуатации геотермальных месторождений. Разрабатываются звукогасители, методы закачки использованной воды в пласт, методы предотвращения выброса вредных газов.

Также оправдано строительство  геотермальных электростанций неподалеку от мусорных полигонов. На мусорных свалках, вследствие разложения органических отходов, образуется газ с очень интенсивным запахом, состоящий главным образом из горючего метана и двуокиси углерода. Из тонны мусора образуется около 150-250 мгаза. Метан из мусора дает тепло и энергию и снижает загрязнение окружающей среды. Схема производства энергии при помощи газа мусорных полигонов представлена на рисунке 20.

Рисунок 20. Схема преобразования тепла и энергии метана в электроэнергию. Источник: [16].

Достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы.[11]

 

    1. Энергетические ресурсы морей и океанов

 

Периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики. Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.

Информация о работе Альтернативные источники энергии и возможность их использования в России