Теломеры. Теломеразная активность

Автор работы: Пользователь скрыл имя, 24 Октября 2015 в 14:03, реферат

Краткое описание

Теломераза - рибонуклеопротеин, который удлиняет концы хромосом (теломеры), укорачивающиеся при репликации ДНК. Активность теломеразы рассматривается как потенциальный маркер физиологического резерва организма: длительность активного функционирования клетки, пролиферативного потенциала, а длину теломер – «клеточными часами», ограничивающими число возможных делений клетки.

Содержание

Введение
Теломеры
Строение и функции теломер
Гипотиза А. М. Оловникова
Теломераза
Как работает теломераза
Теломераза, рак и старение
Вывод
Список литературы

Прикрепленные файлы: 1 файл

молекулярка реферат.docx

— 46.10 Кб (Скачать документ)

АО «МЕДИЦИНСКИЙ УНИВЕРСИТЕТ АСТАНА»

Кафедра молекулярной биологии и медицинской генетики

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Теломеры.

Теломеразная активность.

 

 

 

 

 

                                

                                 Выполнила: Нурлан Л. 135-ОМ

                                                                                      Проверила: Мироедова Э. П.

 

 

 

 

 

 

 

Астана 2015

 

 

План

 

  1. Введение
  2. Теломеры
  3. Строение и функции теломер
  4. Гипотиза А. М. Оловникова
  5. Теломераза
  6. Как работает теломераза
  7. Теломераза, рак и старение
  8. Вывод
  9. Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   Введение 

 

Теломераза - рибонуклеопротеин, который удлиняет концы хромосом (теломеры), укорачивающиеся при репликации ДНК. Активность теломеразы рассматривается как потенциальный маркер физиологического резерва организма: длительность активного функционирования клетки, пролиферативного потенциала, а длину теломер – «клеточными часами», ограничивающими число возможных делений клетки.  Физические нагрузки приводят к увеличению активности теломеразы и количества теломеразной обратной транскриптазы и белка TRF (Terminal Restriction Fragment) в миокарде, лейкоцитах и эндотелиальных клетках и к предотвращению укорочения теломер в них.  При миопатическом синдроме у спортсменов, сопровождающимся усталостью, средняя длина теломер в мышцах спортсменов меньше, чем у здоровых спортсменов, при этом у некоторых индивидов наблюдались экстремально короткие теломеры, что может объясняться повышенной частотой регенерации мышц у интенсивно тренирующихся спортсменов. Было установлено, что физические нагрузки силового характера также приводят к незначительному укорочению теломер в скелетных мышцах индивидов.  Одним из открытых вопросов на сегодня остается поиск биологических маркеров эффективности тренировок. Можно предположить, что изменения теломеразной активности как маркер пролиферативного потенциала может отражать эффективность тренировок. До настоящего времени проверялись, в основном, изменения теломеразной активности при долговременных тренировках.  Другой очень важной проблемой является оценка предела, до которого можно увеличивать интенсивность нагрузок, в частности, чтобы не возникало синдрома перетренированности. С целью поиска таких показателей предлагается оценка средней длины теломер в скелетных мышцах, поскольку именно теломеры определяют резерв числа делений клеток. Таким образом, разработка методических рекомендаций по определению физиологического резерва спортсмена на основе изучения теломеразной активности и длины теломер клеток является актуальной проблемой спортивной медицины.

 

 

 

 

 

 

 

 

 

 

 

 

ТЕЛОМЕРЫ

Во многих современных учебниках теломерами называют специализованные концевые районы линейной хромосомной ДНК, состоящие из многократно повторяющихся коротких нуклеотидных последовательностей. Это определение неполное. В состав теломер входят также многие белки, специфически связывающиеся с теломерными ДНК-повторами. Таким образом, теломеры (так же, как и все другие районы хромосомы эукариот) построены из дезоксинуклеопротеидов (ДНП), то есть комплексов ДНК с белками.

Существование специальных структур на концах хромосом было постулировано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мюллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. Г. Мюллер предложил называть их теломерами (от греч. телос - конец и мерос - часть).

В последующие годы выяснилось, что теломеры не только предотвращают деградацию и слияние хромосом (и тем самым поддерживают целостность генома хозяйской клетки), но и, по-видимому, ответственны за прикрепление хромосом к специальной внутриядерной структуре (своеобразному скелету клеточного ядра), называемой ядерным матриксом. Таким образом, теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра. Более того, мы покажем, что наличие на концах хромосом специальной теломерной ДНК позволяет решить так называемую проблему концевой недорепликации ДНК.

Теломерная ДНК попала в поле зрения молекулярных биологов сравнительно недавно, когда были разработаны эффективные методы определения последовательности нуклеотидов в нуклеиновых кислотах. Первыми объектами исследования были одноклеточные простейшие (ресничная инфузория тетрахимена, в частности), поскольку из-за особенностей строения ядерного и хромосомного аппарата они содержат несколько десятков тысяч очень мелких хромосом и, следовательно, множество теломер в одной клетке (для сравнения: у высших эукариот на клетку приходится менее ста теломер).

Многократно повторяющиеся блоки в теломерной ДНК простейших состоят всего лишь из шести-восьми нуклеотидных остатков. При этом одна цепь ДНК сильно обогащена остатками гуаниловой кислоты (G-богатая цепь; у тетрахимены она построена из блоков TTGGGG), а комплементарная ей цепь ДНК соответственно обогащена остатками цитидиловой кислоты (С-богатая цепь).

У дрожжей повторяющиеся блоки в теломерной ДНК заметно длиннее, чем у простейших, и зачастую не столь регулярные. Каково же было удивление ученых, когда оказалось, что теломерная ДНК человека построена из TTAGGG-блоков, то есть отличается от простейших всего лишь одной буквой в повторе. Более того, из TTAGGG-блоков построены теломерные ДНК (вернее, их G-богатые цепи) всех млекопитающих, рептилий, амфибий, птиц и рыб. Столь же универсален теломерный ДНК-повтор у растений: не только у всех наземных растений, но даже у их весьма отдаленных родственников - морских водорослей он представлен последовательностью TTTAGGG. Впрочем, удивляться здесь особенно нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит генов), а у всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Правда, как это часто бывает в живой природе, из этого общего правила есть редкие, но важные исключения. Наиболее известное из них - теломерная ДНК плодовой мухи дрозофилы. Она представлена не короткими повторами, а ретротранспозонами - подвижными генетическими элементами (подробнее о подвижных генетических элементах и роли ретротранспозонов в образовании теломер см. в статьях В.М. Глазера "Гомологичная генетическая рекомбинация" и "Генетическая рекомбинация без гомологии: процессы, ведущие к перестройкам в геноме" и В.А. Гвоздева "Подвижная ДНК эукариот. Ч. 1-2" в "Соросовском Образовательном Журнале" (1998. ╧ 7, 8).

Очень важная характеристика теломерных ДНК - их длина. У человека она колеблется от 2 до 20 тыс. пар оснований (т.п.о.), а у некоторых видов мышей может достигать сотен т.п.о.

Было замечено, что у многих видов двуспиральная теломерная ДНК на самом конце содержит однотяжевой "хвост". Этот однотяжевой район теломерной ДНК представлен ее G-богатой цепью и заканчивается свободной 3'-гидроксильной группой. Соответственно белки теломер принято подразделять на две группы: белки, которые связаны с однотяжевой теломерной ДНК, и белки, связанные с двутяжевой ДНК теломеры. Эти белки изучаются весьма интенсивно, но знаем мы о них еще мало. Нет сомнений в том, что теломерные белки участвуют во всех функциях теломер, поддерживая их структуру и регулируя длину теломерной ДНК (как мы увидим ниже, длина теломер - чрезвычайно важный параметр). Установлено, что некоторые из белков, ассоциированных с двуспиральной теломерной ДНК, регулируют активность определенных генов, повышая или подавляя их экспрессию. В качестве примера можно привести дрожжевой белок Rap1p. Этот ДНК-связывающий белок, несомненно, принимает участие в регуляции длины теломерной ДНК. В то же время, даже будучи в составе теломеры, он участвует в активации и репрессии транскрипции. Это означает, что изменения или нарушения в структуре теломер могут затрагивать не только их собственные функции, но и экспрессию жизненно важных генов, находящихся в других районах хромосом. Кроме того, важные для поддержания общей структуры хромосом белки располагаются на ДНК, непосредственно примыкающей к теломерной (иногда ее называют субтеломерной ДНК).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Строение и функции теломер.

В клетках человека теломеры обычно представлены одноцепочечной ДНК и состоят из несколько тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G – квадруплексами и состоящие из четырех, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелотированием в центре нее иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом.

Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Критически короткие теломеры неспособны защитить хромосомы от повреждения при митозе (деление клетки). Их появление является сигналом для выхода клеток из митотического цикла. Критическим укорочением теломеры считается величина 3000-5000 пар нуклеотидов или менее 2 кb. Если этой величины достигает хотя бы одна теломера, то в клетке происходит резкое изменение метаболизма, и в первую очередь нарушение репликации ДНК, которые запускают механизмы клеточного сенесенса (репликативное старение) и апоптоза (гибель, разрушение клетки). Исключением из этого правила являются так называемые «иммортальные» (бессмертные) клетки, к которым относятся половые клетки, стволовые тотипотентные (способные дифференцироваться в любые клетки организма) клетки, а также клетки злокачественных опухолей, способные делиться неограниченное число раз.

Основная функция этих участков — поддержание целостности концов хромосом. Теломера содержит специальные последовательности ДНК, обеспечивающие точную репликацию хромосом.  Кроме своей роли в репликации и кэпировании хромосом теломеры, участвуют в мейотическом спаривании хромосомом, мейотической и митотической сегрегации хромосом и в организации ядра, ответственны к ядерным за прикрепление хромосом матриксом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. У большинства эукариот теломеры состоят из простых, коротких повторов, которые восстанавливаются ферментом теломеразой. Теломерные функции регулируются как механизмами на основе нуклеотидных последовательностей, так и эпигенетическими механизмами.

 

 

 

 

Гипотеза Оловникова А. М.

Оловников А. М. в 1971 году выдвинул гипотезу маргинотомии для объяснения феномена лимита Хейфлика. Согласно этой гипотезе лимит Хейфлика объясняется тем, что у эукариот при каждом клеточном делении хромосомы немного укорачиваются. У хромосом имеются особые концевые участки — теломеры, которые после каждого удвоения хромосом становятся немного короче, и в какой-то момент укорачиваются настолько, что клетка уже не может делиться и со временем постепенно теряет жизнеспособность.

А. М. Оловников предполагал, что «нестарение» бактерий обусловлено кольцевой формой ДНК, а теломерные последовательности в стволовых и раковых клетках защищены благодаря постоянному их удлинению при каждом делении клетки ферментом теломеразой.

Значительная часть теоретических разработок А. М. Оловникова посвящены феноменам старения и онтогенеза. Он пытался объяснить в свете своей гипотезы феномены старения, канцерогенеза и иммунных реакций.

В 1998 году вывод о теломерном механизме ограничения числа делений клетки был экспериментально подтверждён. Лимит Хейфлика преодолён активацией теломеразы.

Стремительный прогресс познания в областях клеточной и молекулярной биологии опять, как будто расставил все точки над «i». В 90 годах ХХ века и первом десятилетии ХХI веков стало ясно, что организм любого вида Metazoa состоит из двух клеточных пулов: стволовых клеток, которые не имеют внутренней причины старения и остальных специализированных клеток сомы с ограниченным регенерационным потенциалом и подверженных клеточному старению как от действия теломерно-теломеразного механизма, так и от стохастических причин. Такие постаревшие и переставшие делиться клетки элиминируются из организма апоптозом. Пул стволовых клеток пополняется путем симметричного митоза стволовых клеток, а пул соматических клеток пополняется асимметричным митозом тех же стволовых клеток. Стало ясно и то, что многоклеточному организму необходимо избавляться от поврежденных клеток, способных в случае их выживания давать клон клеток с нарушенными свойствами и функциями, что может грозить непредсказуемыми последствиями (например, образованием злокачественной опухоли). Поэтому, уничтожение апоптозом клеток, достигших лимита Хейфлика только частный случай сохранения морфологического и функционального гомеостаза организма. Другими словами, генетический контроль продолжительности жизни клетки, основанный на контроле за числом её митозов — это только один из механизмов, позволяющих исключить из клеточной популяции долгоживущие клетки, которые за время своего существования (у человека — это многие десятилетия) возможно, сумели в результате суммации молекулярных и метаболических ошибок приобрести признаки вредные для существования организма.

В рассматриваемый период наука признала существование потенциально бессмертных и демонстрирующих пренебрежимое старение. То есть, старение — не обязательный атрибут существования многоклеточных организмов, ибо многие виды прекрасно обходятся без него. Общеизвестно, что стареющие и нестареющие формы имеют одни и те клеточные механизмы, в том числе теломерно-теломеразный механизм старения клеток и апоптоз. В данном случае уместна цитата из Л. Хейфлика: «…я не верю в то, что старение и смерть людей наступает вследствие прекращения деления их клеток».

Информация о работе Теломеры. Теломеразная активность