Сущность жизни и характерные свойства живого организма

Автор работы: Пользователь скрыл имя, 12 Августа 2012 в 15:25, контрольная работа

Краткое описание

Классическое определение немецкого философа Фридриха Энгельса: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

Содержание

1.Сущность жизни и характерные свойства живого организма……………….2
2.Нуклеиновые кислоты. Функциональные группы нуклеиновых кислот…..4
3.Влияние факторов среды на поглотительную деятельность корневой системы……………………………………………………………………………6
4.Действие недостатка воды на растения……………………………………….7
5.Физиология формирования плодов…………………………………………...9
6.Физиолого-биохимические изменения у теплолюбивых растений, вызываемые действием пониженных температур…………………………….11
7. Физиологические особенности засухоустойчивых
сельскохозяйственных растений……………………………………………….12
8.Фотосинтез и урожай. Возможность программирования урожая………….14
Литература………………………………………………………………………17

Прикрепленные файлы: 1 файл

физиология.doc

— 104.00 Кб (Скачать документ)


Содержание

 

1.Сущность жизни и характерные свойства живого организма……………….2

 

2.Нуклеиновые кислоты. Функциональные группы нуклеиновых кислот…..4

 

3.Влияние факторов среды на поглотительную деятельность корневой системы……………………………………………………………………………6

 

4.Действие недостатка воды на растения……………………………………….7

 

5.Физиология формирования плодов…………………………………………...9

 

6.Физиолого-биохимические изменения у теплолюбивых растений, вызываемые действием пониженных температур…………………………….11

 

7. Физиологические особенности засухоустойчивых

сельскохозяйственных растений……………………………………………….12

 

8.Фотосинтез и урожай. Возможность программирования урожая………….14

 

Литература………………………………………………………………………17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Сущность жизни и характерные свойства живого организма

 

Сущность жизни

         Классическое определение немецкого философа Фридриха Энгельса: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

         В XX в. делались многочисленные попытки дать определение жизни, отражающие всю многогранность данного процесса.

Все определения содержали следующие постулаты, отражающие сущность жизни:

—    жизнь есть особая форма движения материи;

—    жизнь есть обмен веществ и энергии в организме;

—    жизнь есть жизнедеятельность в организме;

—    жизнь есть самовоспроизведение организмов, которое обеспечивается передачей генетической информации от поколения к поколению.

         Жизнь представляет собой форму движения материи высшую по сравнению с физической и химической формами ее существования.

          В самом общем смысле жизнь можно определить как активное, идущее с затратой энергии, полученной извне, поддержание и самовоспроизведение специфических структур, состоящих из биополимеров — белков и нуклеиновых кислот.

           Ни нуклеиновые кислоты, ни белки в отдельности не являются субстратом жизни. Они становятся субстратом жизни лишь тогда, когда находятся и функционируют в клетках. Вне клеток — это химические соединения.

По определению отечественного биолога В. М. Волькенштейна, «живые тела, существующие на Земле, представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот».

 

Характерные свойства живого организма.

Для живого характерен ряд общих свойств. Перечислим их.

1.    Единство химического состава. Живые существа образованы теми же химическими элементами, что и неживые объекты, но в живых существах 90% массы приходится на четыре элемента: С, О, N, Н, которые участвуют в образовании сложных органических молекул, таких, как белки, нуклеиновые кислоты, углеводы, липиды,

2.    Единство структурной организации. Клетка является единой структурно-функциональной единицей, а также единицей развития почти для всех живых организмов на Земле. Исключением являются вирусы, но и у них свойства живого проявляются, лишь когда они находятся в клетке. Вне клетки жизни нет.

3.    Открытость. Все живые организмы представляют собой открытые системы, т. е. системы, устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды.

4.    Обмен веществ и энергии. Все живые организмы способны к обмену веществ с окружающей средой. Обмен веществ осуществляется в результате двух взаимосвязанных процессов: синтеза органических веществ в организме (за счет внешних источников энергии — света и пищи) и процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом.

Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.

5.    Самовоспроизведение (репродукция). Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В ее основе лежит информация о строении и функциях любого живого организма, заложенная в нуклеиновых кислотах и обеспечивающая специфичность структуры и жизнедеятельности живого.

6.    Саморегуляция. Любой живой организм подвергается воздействию непрерывно меняющихся условий окружающей среды. В то же время для протекания процессов жизнедеятельности в клетках необходимы определенные условия. Благодаря механизмам саморегуляции сохраняется относительное постоянство внутренней среды организма, т. е. поддерживается постоянство химического состава и интенсивность течения физиологических процессов (иными словами, поддерживается гомеостаз: от греч. homoios — одинаковый и stasis — состояние).

7.    Развитие и рост. В процессе индивидуального развития (онтогенеза) постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост. Кроме того, все живые системы эволюционируют — изменяются в ходе исторического развития (филогенеза).

8.    Раздражимость. Любой живой организм способен избирательно реагировать на внешние и внутренние воздействия.

9. Наследственность и изменчивость. Преемственность поколений обеспечивается наследственностью. Потомки не являются копиями своих родителей из-за способности наследственной информации к изменениям — изменчивости.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе. Например, кристаллы в насыщенном растворе соли могут «расти». Однако этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Для горящей свечи тоже характерны процессы обмена веществ и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.

Следовательно, все перечисленные выше свойства в своей совокупности характерны только для живых организмов

 

17. Нуклеиновые кислоты. Функциональные группы нуклеиновых кислот.

 

Нуклеиновые кислоты (НК) представляют собой гетерополимеры, мономерами которых являются нуклеотиды. Нуклеотид состоит из азотистого основания, связанного с ним пятиуглеродного сахара и остатка ортофосфорной кислоты (Р). В НК присутствуют азотистые основания двух типов — производные пурина (пуриновые) и производные пиримидина (пиримидиновые). К пуриновым основаниям относятся аденин (А), гуанин (Г), к пиримидиновым — цитозин (Ц), урацил (У) и тимин (Т).

           Каждый нуклеотид получает название по входящему в него азотистому основанию, например адениловая кислота (или аденозинмонофосфат — АМФ): аденин — рибоза — Р. АМФ может фосфорилироваться с образованием аденозиндифосфата — АДФ (аденин—рибоза—Р ~ Р); фосфорилирование последнего приводит к образованию аденозинтрифосфата (АТФ):

          При гидролитическом отщеплении остатка фосфорной кислоты от АМФ высвобождается 12,6 кДж, гидролиз же второй или третьей фосфатной связи в АТФ дает около 33,6 кДж. Универсальным энергетическим аккумулятором в клетке является АТФ. Присоединение остатка фосфорной кислоты к АДФ с использованием энергии окисления (при дыхании) или света (при фотосинтезе) представляет «зарядку». Отщепление фосфата от АТФ с образованием АДФ сопровождается выходом энергии — «разрядка»:

 

 

АДФ + Фнеорг + энергия →АТФ + Н2О — «зарядка»;

 

АТФ + Н2О → АДФ + Фнеорг + энергия — «разрядка».

 

 

Энергия макроэргической связи АТФ расходуется в клетке на самые разные виды работ. Не только АТФ, но и другие трифосфатнуклеотиды (ГТФ, ЦТФ, УТФ, ТТФ) являются макроэргическими соединениями, способными при гидролизе концевой фосфатной связи освобождать большое количество энергии.

        При образовании НК нуклеотиды соединяются друг с другом с помощью фосфорно-эфирной связи, возникающей между остатком фосфорной кислоты у пятого атома рибозы или дезоксирибозы и гидроксилом третьего атома сахара следующего нуклеотида:

    Образующаяся полинуклеотидная цепочка имеет два конца — 5', где расположена несвязанная фосфатная группа, и 3', у которой находится свободная группа ОН при третьем атоме пентозы.

 

НК подразделяют на рибонуклеиновые (РНК) и дезоксирибо-нуклеиновые (ДНК). Их состав различен. В РНК входят нуклеотиды с А, Г, Ц, У, сахар — рибоза. ДНК содержит А, Г, Ц, Т, сахар — дезоксирибоза. Последовательность нуклеотидов определяет первичную структуру НК.

        Как и белки, НК имеют сложную специфическую структуру, в основе которой лежит принцип комплементарности. Комплементарность проявляется в том, что азотистые основания взаимодействуют друг с другом посредством образования водородных связей строго попарно — А с Т или У, а Г с Ц. Между комплементарными основаниями возникают две или три водородные связи (…..):

             Трехмерная структура ядерной ДНК представляет собой двойную спираль: две правозакрученные спирали переплетены друг с другом, при этом 3' — конец одной из них соответствует 5' — концу другой. Структура двойной спирали стабилизируется водородными связями между комплементарными нуклеотидами. Молекула ДНК хлоропластов и митохондрий (как и ДНК прокариот) замкнута в кольцо.

        В интерфазе клеточного деления ДНК входит в состав особого ядерного вещества — хроматина, в котором также присутствуют белки — основные (гистоны) и неосновные, а также небольшое количество РНК и липидов. Основой структуры хроматина являются нуклеосомы, которые представляют собой белковые диски из 8 молекул гистонов, по окружности которых намотана часть ДНК (140 пар оснований). Нуклеосомы соединяются участками ДНК (линкерами), состоящими приблизительно из 60 нуклеотидных пар. Нуклеосомная укладка ДНК способствует ее компактизации, степень которой увеличивается в митотическом ядре. В период митоза хроматин формирует хромосомы, число и форма которых являются важнейшим критерием вида. При образовании хромосомы 8—10 нуклеосом объединяются в виде глобул. В дальнейшем уплотненная таким образом структура образует петли. Сближаясь между собой, они формируют толстые (0,1—0,2 мкм) хромосомные нити (хромонемы), которые, в свою очередь, образуют видимые в микроскоп хромосомы. Все это обеспечивает концентрацию в небольшом ядре Огромного количества наследственной информации, а также облегчает абсолютно точное ее распределение между дочерними клетками. Структура молекул РНК достаточно разнообразна, что связано с многообразием их функций. Так, матричная (информационная) РНК представляет собой одинарную спираль, для транспортной РНК характерно сочетание одинарных и спаренных участков, рибосомальная РНК имеет более сложную структуру.

 

 

 

 

 

39.Влияние факторов среды на поглотительную деятельность корневой системы.

 

Изменение среды, окружающей корневую систему (например, фактора тепла), оказывает большое действие на развитие надземных частей растений. Это подтверждается, например, тем значением, которое имеет почвенный подогрев при размножении теплолюбивых растений

Соотношение между корнем и надземными частями растений также зависит от почвенно-климатических условий. В северной влажной зоне масса корневой системы в 5—10 раз уступает массе надземных частей. Через корень,растения поглощают из почвы главным образом ионы минеральных солей, а также некоторые продукты жизнедеятельности почвенных микроорганизмов и корневые выделения др. растений. Поглощённые К. соединения азота, фосфора и серы взаимодействуют с притекающими из листьев продуктами фотосинтеза с образованием аминокислот, нуклеотидов и др. органических соединений.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54. Действие недостатка воды на растения

Недостаток воды в тканях растений создается, когда расход воды при транспирации превышает ее поступление. Водный дефицит может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растения регулируют уровень водного дефицита, меняя отверстость устьиц. Обычно при завядании листьев водный дефицит их восстанавливается в вечерние и ночные часы (временное завядание). Глубокое завядание наблюдается при отсутствии в почве доступной для растения воды. Это завядание чаще всего приводит растения к гибели.

Характерный признак устойчивого водного дефицита — сохранение его в тканях утром, а также прекращение выделения пасоки из срезанного стебля. Действие засухи в первую очередь приводит к уменьшению в клетках свободной воды, что изменяет гидратные оболочки белков цитоплазмы и сказывается на функционировании белков-ферментов. При длительном завядании снижается активность ферментов синтеза и активируются гидролитические процессы, в частности протеолиз, что ведет к увеличению содержания в клетках низкомолекулярных белков. В результате гидролиза полисахаридов в тканях накапливаются растворимые углеводы, отток которых из листьев за­медлен. Под влиянием засухи в листьях снижается количество РНК вследствие уменьшения ее синтеза и активации ри-бонуклеаз. В цитоплазме наблюдается распад полирибосомных комплексов. Изменения, касающиеся ДНК, происходят лишь при длительной засухе. Из-за уменьшения свободной воды возрастает концентрация вакуолярного сока. Изменяется ионный состав клеток, облегчаются процессы выхода из них ионов.

В большинстве случаев суммарный фотосинтез при недостатке влаги снижается, хотя иногда на начальных этапах обезвоживания наблюдается некоторое увеличение его интенсивности. Снижение скорости фотосинтеза может быть следствием: 1) недостатка СОз из-за закрывания устьиц, 2) нарушения синтеза хлорофиллов, 3) разобщения транспорта электронов и фотофосфорилирования, 4) изменений в фотохимических реакциях и реакциях восстановления СОз, 5) нарушения структуры хлоропластов, 6) задержки оттока ассимилятов из листьев при длительном водном дефиците.

При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания (возможно, из-за большого количества субстратов дыхания — Сахаров), а затем постепенно снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается или отмечается небольшое усиление.

 

В условиях водного дефицита быстро тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост самого растения, особенно листьев и стеблей. Рост корней в начале засухи даже ускоряется и снижается лишь при длительном недостатке воды в почве. Корни реагируют на засуху рядом защитных приспособлений: опробковением, суберинизацией экзодермы, ускорением дифференцировки клеток, выходящих из меристемы, и др.

Информация о работе Сущность жизни и характерные свойства живого организма