Строение, свойства и биологические функции нуклеиновых кислот. Генетический код и его свойства

Автор работы: Пользователь скрыл имя, 28 Августа 2013 в 16:57, контрольная работа

Краткое описание

Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот —дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Прикрепленные файлы: 1 файл

биология.doc

— 72.00 Кб (Скачать документ)

Строение, свойства и  биологические функции нуклеиновых  кислот. Генетический код и его  свойства.

 

Нуклеиновые кислоты - биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Каждый из компонентов нуклеиновой кислоты имеет свою структуру:

 

 

Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот —дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Мономерные формы также  встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

Нуклеиновые кислоты  хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критическим значениям уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.

Химические свойства РНК напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми.

Участие ДНК и РНК в синтезе белков - одна из основных функций нуклеиновых кислот. Белки - важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор - взаимоориентация азотсодержащих гетероциклов ДНК и РНК.

Основная задача ДНК - хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК.

Нуклеиновые кислоты  обеспечивают хранение, воспроизведение  и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.

Генетический код обладает следующими основными свойствами:

1. Генетический код триплетен: каждая аминокислота кодируется триплетом нуклеотидов  ДНК и соответствующим триплетом иРНК. При этом кодоны ничем не отделены друг от друга (отсутствуют «запятые»).

2. Генетический код  является избыточным (вырожденным): почти все аминокислоты могут кодироваться разными кодонами. Только двум аминокислотам соответствует по одному кодону: метионину (АУГ) и триптофану (УГГ). Зато лейцину, серину и аргинину соответствует по 6 разных кодонов.

3. Генетический код  является неперекрывающимся:  каждая пара нуклеотидов принадлежит только одному кодону (исключения обнаружены у вирусов).

4. Генетический код един для подавляющего большинства биологических систем. Однако имеются и исключения, например, у инфузорий и в митохондриях разных организмов. Поэтому генетический код называют квазиуниверсальным.

Таким образом, ДНК содержит информацию, которая делает возможным производство протеинов, и протеины контролируют рост и функционирование клетки, которые ответственны за весь организм. Генетический код, обнаруженный внутри молекулы ДНК, имеет существенное значение для жизни. Он отвечает за то, что живые существа верно воспроизводятся «по роду своему» в точности, как это утверждается законами генетики. Верное воспроизведение, конечно, обязано неимоверной сложности этого кода.

 

 

 

 

 

 

 

 

Хромосомная теория наследственности (обосновать на примере опытов Т.Моргана).

 

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 века на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.

Хромосомная теория наследственности -  одно из обобщений в генетике, утверждающее, что наследственные факторы (гены) расположены в хромосомах, передача которых от родителей потомкам обеспечивает в поколениях преемственность свойств и признаков у особей одного вида.

Детальная разработка хромосомной  теории была произведена Т.Х. Морганом и его учениками (начиная с 1910 года). Изучая наследование окраски глаз у плодовой мушки дрозофилы, Морган показал, что цвет глаз – признак, сцепленный с полом, и что по характеру его наследования ген, определяющий этот признак, должен находиться в половой хромосоме (Х-хромосоме). Так экспериментально была доказана связь конкретного гена с конкретной хромосомой. В дальнейшем было установлено, что многие признаки наследуются совместно – как один комплекс. Это означало, что контролирующие их гены образуют группы сцепления. Число таких групп сцепления оказалось равным гаплоидному числу хромосом, постоянному для каждого вида организмов. Затем Морган обнаружил, что сцепленное наследование признаков может нарушаться в результате кроссинговера во время мейоза. На основании детального исследования сцепления генов и кроссинговера (на материале различных мутаций у дрозофилы) Морган и его сотрудники разработали методы определения взаимного положения различных генов на хромосомах и построения генетических карт хромосом.

Хромосомная теория нашла  подтверждение и дальнейшее развитие в открытии химической природы гена, выяснении строения хромосом и в  других достижениях молекулярной генетики.

 

Биологический вид, его  критерии. Понятие о генофонде  вида. Популяционная структура вида.

 

Вид – это реально существующая в природе совокупность особей, занимающих определенный ареал, имеющих общее происхождение, морфологическое и генетическое сходство, свободно скрещивающихся между собой и дающих плодовитое потомство. В силу того, что иногда бывает очень сложно отнести к определенному виду ту или иную особь, биологи разработали критерии, на основании которых двух, внешне очень похожих особей относят к одному или разным видам.

Критерии вида:

– морфологический – особи, принадлежащие к одному виду, похожи друг на друга по своему внешнему и внутреннему строению;

– физиологический – особи, принадлежащие к одному виду, похожи друг на друга по многим физиологическим особенностям жизнедеятельности;

– биохимический – особи, принадлежащие к одному виду содержат сходные белки;

– генетический – особи, принадлежащие к одному виду, имеют одинаковый кариотип, скрещиваются друг с другом в природе и дают плодовитое потомство. Между разными видами обмена генов не происходит;

– экологический – особи одного вида ведут сходный образ жизни в близких условиях среды;

– географический – вид распространен на определенной территории (ареале).

Наиболее существенен  для определения принадлежности особей к разным видам генетический критерий. Ни один критерий не может быть исчерпывающим. Только на основании совокупности критериальных признаков можно провести различия между близкими видами.

Популяцией называется совокупность особей одного вида, занимающих определенную территорию и обменивающихся генетическим материалом. Ввиду того, что живые организмы, входящие в одну популяцию, свободно скрещиваются между собой, можно говорить о генофонде популяции. В каждом поколении отдельные особи вносят больший или меньший вклад в общий генофонд в зависимости от их приспособительной ценности. Неоднородность организмов, входящих в популяцию, создает условия для действия естественного отбора, поэтому популяция считается наименьшей эволюционной единицей, с которой начинаются эволюционные преобразования вида. Популяция таким образом представляет собой надорганизменную форму организации жизни. 
Популяция, однако, не является полностью изолированной группой. Иногда происходит скрещивание с особями других популяций. Если же популяция окажется полностью изолированной, она может дать начало новому подвиду, а впоследствии и виду.

 

Список использованных источников

 

        1. Азимов А. Генетический код. От теории эволюции до расшифровки ДНК, М.: Центрополиграф, 2006г.
        2. Ратнер В. А. Генетический код как система, Соросовский образовательный журнал, 2000г. №3
        3. Морган Т. Г. Структурные основы наследственности, М-П, 1924г.
        4. Морган Т. Г. Избранные работы по генетике, М-Л, 1937г.
        5. Иорданский Н. Н. Эволюция жизни, М.: Академия, 2001г.



Информация о работе Строение, свойства и биологические функции нуклеиновых кислот. Генетический код и его свойства