Строение клетки, морфологическое строение хромосом, кариотип и его видовые особенности

Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:30, доклад

Краткое описание

Цитология - наука о клетке. Наука о клетке называется цитологией (греч. «цитос»-клетка, «логос»-наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой.

Прикрепленные файлы: 1 файл

реферат гистологи.doc

— 93.50 Кб (Скачать документ)

                Министерство образования и науки Республики  Казахстан

 

Костанайский  государственный  университет  им. А.Байтурсынова

 

Кафедра ветеринарной санитарии

 

 

 

 

 

 

 

Доклад

на тему «строение клетки, морфологическое строение хромосом, кариотип и его видовые особенности»

 

 

 

                     Дисциплина: Ветеринарная генетика

Специальность  5В120200-Ветеринарная санитария

 

 

 

 

 

 

 

 

 Выполнила:                                      Мендекинова А., студентка 2 курса

                                                             очной формы обучения, группа: 12-701-16

 

 Руководитель:                                  Бугубаева А. У

 

 

 

 

 

                                                                        

 

 

 

Костанай, 2013

Строение клетки

Цитология - наука о клетке. Наука о клетке называется цитологией (греч. «цитос»-клетка, «логос»-наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Современная цитология - наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология - одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина "клетка" насчитывает свыше 300 лет. Впервые название «клетка» в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.

Клеточная теория. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т.Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ.Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического мира.

Современная клеточная - теория включает следующие положения:

клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого;

клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека - сахарный диабет. Причина этого заболевания - недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Возбудители кокцидиоза - опасного заболевания кроликов, кур, гусей и уток - паразитические простейшие - кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, полностью нарушают обмен веществ, а затем разрушают эти клетки. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы и при отсутствии лечения животные погибают. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.

Изучение клеток разнообразных одноклеточных и многоклеточных организмов с помощью светооптического и электронного микроскопов показало, что по своему строению они разделяются на две группы. Одну группу составляют бактерии и сине-зеленые водоросли. Эти организмы имеют наиболее простое строение клеток. Их называют доеденными (прокариотами), так как у них нет оформленного ядра (греч. «картон»-ядро) и нет многих структур, которые называют органоидами. Другую группу составляют все остальные организмы: от одноклеточных зеленых водорослей и простейших до высших цветковых растений, млекопитающих, в том числе и человека. Они имеют сложно устроенные клетки, которые называют ядерными (эукариотическими). Эти клетки имеют ядро ​​и органоиды, выполняющие специфические функции.

Особую, неклеточную форму жизни составляют вирусы, изучением которых занимается вирусология.

Строение и функции оболочки клетки

Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. "мембрана»-кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.

 

 

Морфология хромосом лучше всего видна в клетке на стадии метафазы. Хромосома состоит из двух палочкообразных телец - хроматид. Обе хроматиды каждой хромосомы идентичны друг другу по генному составу.

 
Хромосомы дифференцированы по длине. Хромосомы имеют центромеру или первичную перетяжку, две теломеры и два плеча. На некоторых хромосомах выделяют вторичные перетяжки и спутники. Движение хромосомы определяет Центромера, которая имеет сложное строение. 
 
ДНК центромеры отличается характерной последовательностью нуклеотидов и специфическими белками. В зависимости от расположения центромеры различают акроцентрические, субметацентрические и метацентрические хромосомы. 
 
Как говорилось выше, некоторые хромосомы имеют вторичные перетяжки. Они, в отличие от первичной перетяжки (центромеры), не служат местом прикрепления нитей веретена и не играют никакой роли в движении хромосом. Некоторые вторичные перетяжки связаны с образованием ядрышек, в этом случае их называют ядрышковыми организаторами. В ядрышковых организаторах расположены гены, ответственные за синтез РНК. Функция других вторичных перетяжек еще не ясна. 
 
У некоторых акроцентрических хромосом есть спутники — участки, соединенные с остальной частью хромосомы тонкой нитью хроматина. Форма и размеры спутника постоянны для данной хромосомы. У человека спутники имеются у пяти пар хромосом. 
 
Концевые участки хромосом, богатые структурным гетерохроматином, называются теломерами. Теломеры препятствуют слипанию концов хромосом после редупликации и тем самым способствуют сохранению их целостности. Следовательно, теломеры ответственны за существование хромосом как индивидуальных образований. 
 
Хромосомы, имеющие одинаковый порядок генов, называют гомологичными. Они имеют одинаковое строение (длина, расположение центромеры и т. д.). Негомологичные хромосомы имеют разный генный набор и разное строение. 
 
Исследование тонкой структуры хромосом показало, что они состоят из ДНК, белка и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки — гистоны заряжены положительно. Этот комплекс ДНК с белком называют хроматином. Хроматин может иметь разную степень конденсации. Конденсированный хроматин называют гетерохроматином, деконденсированный хроматин — эухроматином. Степень деконденсации хроматина отражает его функциональное состояние. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых локализована большая часть генов. Различают структурный гетерохроматин, количество, которого различается в разных хромосомах, но располагается он постоянно в околоцентромерных районах. Кроме структурного гетерохроматина существует факультативный гетерохроматин, который появляется в хромосоме при сверхспирализации эухроматических районов. Подтверждением существования этого явления в хромосомах человека служит факт генетической инактивации одной Х-хромосомы в соматических клетках женщины. Его суть заключается в том, что существует эволюционно сформировавшийся механизм инактивации второй дозы генов, локализованных в Х-хромосоме, вследствие чего, несмотря на разное число Х-хромосом в мужском и женском организмах, число функционирующих в них генов уравнено. Максимально конденсирован хроматин во время митотического деления клеток, тогда его можно обнаружить в виде плотных хромосом 
 
Размеры молекул ДНК хромосом огромны. Каждая хромосома представлена одной молекулой ДНК. Они могут достигать сотен микрометров и даже сантиметров. Из хромосом человека самая большая — первая; ее ДНК имеет общую длину до 7 см. Суммарная длина молекул ДНК всех хромосом одной клетки человека составляет 170 см. 
 
Несмотря на гигантские размеры молекул ДНК, она достаточно плотно упакована в хромосомах. Такую специфическую укладку хромосомной ДНК обеспечивают белки гистоны. Гистоны располагаются по длине молекулы ДНК в виде блоков. В один блок входит 8 молекул гистонов, образуя нуклеосому (образование, состоящее из нити ДНК, намотанной вокруг октамера гистонов). Размер нуклеосомы около 10 нм. Нуклеосомы имеют вид нанизанных на нитку бусинок. Нуклеосомы и соединяющие их участки ДНК плотно упакованы в виде спирали, на каждый виток такой спирали приходится шесть нуклеосом. Так формируется структура хромосомы. 
 
Наследственная информация организма строго упорядочена по отдельным хромосомам. Каждый организм характеризуется определенным набором хромосом (число, размеры и структура), который называется кариотипом. Кариотип человека представлен двадцатью четырьмя разными хромосомами (22 пары аутосом, Х- и Y-хромосомы). Кариотип — это паспорт вида. Анализ кариотипа позволяет выявлять нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития. 
 
Длительное время полагали, что кариотип человека состоит из 48 хромосом. Однако в начале 1956 г. было опубликовано сообщение, согласно которому число хромосом в кариотипе человека равно 46. 
 
Хромосомы человека различаются по размеру, расположению центромеры и вторичных перетяжек. Впервые подразделение кариотипа на группы было проведено в 1960 г. на конференции в г. Денвере (США). В описание кариотипа человека первоначально были заложены два следующих принципа: расположение хромосом по их длине; группировка хромосом по расположению центромеры (метацентрические, субметацентрические, акроцентрические). 
 
Точное постоянство числа хромосом, их индивидуальность и сложность строения свидетельствуют о важности выполняемой ими функции. Хромосомы выполняют функцию основного генетического аппарата клетки. В них в линейном порядке расположены гены, каждый из которых занимает строго определенное место (локус) в хромосоме. В каждой хромосоме много генов, но для нормального развития организма необходим набор генов полного хромосомного набора.

 

Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов.

Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

Изучение кариотипов и их изменчивости важно для здравоохранения (многие генетические заболевания связаны с изменением кариотипа), селекции (многие сорта растений различаются по кариотипу) и экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика).Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом (см. рис. в конце темы).

В понятие «кариотип» включается число хромосом, их размеры, морфология, особенности продольной дифференцировки.

Метафазная хромосома состоит из двух продольных субъединиц – хроматид, связанных между собой в области первичной перетяжки –  центромеры. Обе хроматиды несут совершенно идентичный набор генов (разумеется, при отсутствии мутаций). Центромера делит хромосому на два плеча: короткое – р и длинное – q (это номенклатура хромосом человека; у мушки дрозофилы различают плечи L – левое и R – правое). Если оба плеча хромосомы равны по длине, то такая хромосома называется метацентрической, если неравны – то такая хромосома называется субметацентрической, если же одно из плеч очень короткое, то такая хромосома называется акроцентрической. Конечные участки хроматид называются теломеры. У некоторых хромосом в области теломер имеются удаленные структуры (спутники); это спутничные хромосомы.

При специальных методах окраски (дифференциальная окраска) видно, что хромосомы состоят из чередующихся участков – дисков: С, Т, R, G, N, Q.

Таким образом, метафазные хромосомы обладают индивидуальностью.

Минимально возможное число хромосом, обеспечивающее существование организмов данного вида, называется основным хромосомным числом и обозначается символом х. Например, для большинства Голосеменных растений х=12, а для покрытосеменных основное число х исходно равно 7 (хотя у ряда покрытосеменных встречаются и иные основные хромосомные числа: х=12 (Пасленовые),х=19 (Ивовые).

Минимально возможный набор хромосом  называется цитогеном. Различные цитогеномы обозначаются буквами латинского алфавита. Кариотип может включать себя несколько геномов: один, два, три и более. Метафазные хромосомы одного генома, расположенные в определенном порядке, образуют идиограмму – схематическое отражение кариотипа.

Организацию кариотипа вначале удобнее рассмотреть на примере многоклеточных животных. У этих организмов различают два типа клеток: соматические клетки, из которых построено тело (сома) организмов, и половые клетки. Половые клетки (яйцеклетки и сперматозоиды) образуются в результате гаметного мейоза. В подавляющем большинстве случаев число хромосом в половых клетках соответствует основному хромосомному числу и называется гаплоидным числом хромосом. Гаплоидное число хромосом обозначается символом n. Таким образом, у многоклеточных животных x=n. В гаплоидном наборе каждая хромосома представлена одним гомологом. В соматических клетках содержится удвоенный, или диплоидный набор хромосом, который обозначается символом 2n. В диплоидном наборе каждая хромосома представлена двумя гомологами (исключение составляют половые хромосомы у гетерогаметного пола, например, у самцов большинства млекопитающих X и Y–хромосомы негомологичны).

 


 



Информация о работе Строение клетки, морфологическое строение хромосом, кариотип и его видовые особенности