Физиология белковой клетки

Автор работы: Пользователь скрыл имя, 18 Декабря 2011 в 15:37, реферат

Краткое описание

Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.

Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого про-стетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада.

Прикрепленные файлы: 1 файл

физиология.docx

— 887.69 Кб (Скачать документ)

Липиды могут  образовывать комплексы с другими  биологическими молекулами.

Липопротеины — сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.

Гликолипиды — это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).

Функции липидов

Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая. При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений (кокосовая пальма, клещевина, подсолнечник, соя, рапс и др.) служат сырьем для получения масла промышленным способом.

Защитная  и теплоизоляционная. Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

Смазывающая и водоотталкивающая. Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

Регуляторная. Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

Метаболическая. Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются источником метаболической воды. При  окислении жира образуется примерно 105 г воды. Эта вода очень важна  для некоторых обитателей пустынь, в частности для верблюдов, способных  обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели. Необходимую  для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления  жира.

ЖИРЫ И  МАСЛА

ЖИРЫ  И МАСЛА – природные соединения, находящиеся в тканях животных, растений, в семенах и плодах различных растений, в некоторых микроорганизмах. Как правило, это смеси, состоящие из полных эфиров глицерина и жирных кислот и имеющие состав

где R, R' и R –  углеводородные остатки (радикалы) жирных кислот, содержащие от 4 до 26 атомов углерода.

ЖИРЫ  И МАСЛА – природные соединения, находящиеся в тканях животных, растений, в семенах и плодах различных растений, в некоторых микроорганизмах. Как правило, это смеси, состоящие из полных эфиров глицерина и жирных кислот и имеющие состав

где R, R' и R –  углеводородные остатки (радикалы) жирных кислот, содержащие от 4 до 26 атомов углерода.

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту». В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса. Однако Жоффруа подчеркивал, что эта масса – вовсе не исходный жир, так как отличается от него по свойствам. То, что в состав жиров и масел входит также глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле. Нагревая оливковое масло с влажным свинцовым глётом (PbO), чтобы получить нужную ему мазь (по профессии Шееле был аптекарем), он выделил из смеси неизвестное ранее жидкое вещество. Повторив опыты со свиным салом, гвоздичным маслом, другими маслами и жирами, Шееле установил, что открытое им вещество является составной частью всех растительных и животных жиров.

В те времена  при описании новых веществ было принято указывать не только их физические и химические свойства, но и вкус. Поэтому нет ничего удивительного  в том, что Шееле, который пытался даже определить, какова на вкус синильная кислота, попробовал и открытое им вещество. К счастью, оно оказалось неядовитым и даже сладким. Так он его и назвал: «сладкое начало масел». Кроме глицерина, Шееле обнаружил в продуктах расщепления жиров неизвестные ранее химические соединения, которые он назвал жирными кислотами.

Впервые химический состав жиров определил в начале прошлого века французский химик  Мишель Эжен Шеврёль, основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии Химические исследования тел животного происхождения. Шеврёль прожил исключительно плодотворную и долгую жизнь: он родился в 1786, за три года до штурма Бастилии, а умер почти через 103 года, простудившись при осмотре работ по постройке Эйфелевой башни. На торжества, посвященные столетию Шеврёля, собрались более двух тысяч ученых со всей Европы; на банкете почтенный профессор лихо отплясывал с самой молодой участницей – восемнадцатилетней Жизель Тифено.

Действуя  водными растворами кислот и щелочей  на различные жиры, он получил в  результате реакции гидролиза (омыления) открытый еще Шееле глицерин и не известные ранее химические соединения – различные жирные кислоты, многим из которых он и дал названия. А «сладкое масло» Шееле Шеврёль назвал глицерином (греч. glykeros – сладкий). Как установил Шееле, жиры по своему составу аналогичны уже тогда известным сложным эфирам, которые при гидролизе превращаются в спирты и кислоты.

Формула и  химическое строение глицерина были установлены значительно позже. Оказалось, что это вещество является трехатомным спиртом HO–CH2–CH(OH)–CH2–OH, т.е. имеет три гидроксильные группы, поэтому он может присоединить три молекулы кислоты с образованием сложного эфира – глицерида. Если все три гидроксильные группы присоединили остатки карбоновых кислот, образуются триглицериды; при гидролизе они распадаются на глицерин и свободные кислоты:

Именно из триглицеридов состоят в основном масла и жиры.

В 1854 французский  химик Марселен Бертло (1827–1907) провел реакцию этерификации, то есть образования сложного эфира между глицерином и жирными кислотами и таким образом впервые синтезировал жир. В 1859 его соотечественник Шарль Вюрц (1817–1884), используя реакцию, названную его именем, синтезировал жиры, нагревая трибромпропан с «серебряными мылами», например: CH2Br–CHBr–CH2Br + 3C17H35COOAg® CH2(OOCC17H35)–CH(OOCC17H35)–CH2(OOCC17H35) + 3AgBr. Аналогично были получены моно- и диглицериды. Таким образом можно получить «синтетические жиры» с любым числом атомов углерода в цепях жирных кислот. Конечно, намного проще и дешевле получать жиры из природных источников, но Бертло и Вюрц вовсе не собирались заменять природный жир синтетическим. Проведенный ими так называемый «встречный синтез» однозначно доказывал состав природных жиров. Такой метод, наряду с анализом изучаемого вещества, нередко используется при исследовании сложных органических соединений.

Воска

   Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной  стенки. Клеточная оболочка определяет форму клетки, придает клеткам  и тканям растений механическую прочность  и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как  механический каркас. Клеточная оболочка обладает такими свойствами, которые  позволяют противостоять давлению воды внутри клетки, и в то же время  обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником. Появились данные, что углеводные компоненты клеточной оболочки, взаимодействуя с гормонами, вызывают ряд физиологических изменений. Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная. В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы. Первичные клеточные стенки содержат из расчета на сухое вещество: 25% целлюлозы, 25% гемицеллюлозы, 35% пектиновых веществ и 1—8% структурных белков. Однако цифры весьма колеблются. Так, в состав клеточных стенок колеоптилей злаков входит до 60—70% гемицеллюлоз, 20—25 % целлюлозы, 10% пектиновых веществ. Вместе с тем клеточные стенки эндосперма содержат до 85% гемицеллюлоз. Во вторичных клеточных стенках больше целлюлозы. Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Целлюлоза, или клетчатка (С6Н10О5)n, представляет собой длинные неразветвленные цепочки, состоящие из 3—10 тыс. остатков D-глюкозы, соединенных b-1,4-гликозидными связями. Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями. Диаметр мицеллы составляет 5 нм, диаметр микрофибриллы — 25—30 нм, макрофибриллы — 0,5 мкм. Структура микро- и макрофибрилл неоднородна. Наряду с хорошо организованными кристаллическими участками имеются паракристаллические, аморфные.

   Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены в аморфную желеобразную массу — матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,— это производные пентоз и гексоз. Степень полимеризации у этих соединений меньше по сравнению с клетчаткой (150—300 мономеров, соединенные b-1,3- и b-1,4-гли-козидными связями). Из гемицеллюлоз наибольшее значение имеют ксило-глюканы, которые входят в состав матрикса первичной клеточной стенки. Это цепочки остатков D-глюкозы, соединенных b-1,4-гликозидными связями, у которых от шестого углеродного атома глюкозы отходят боковые цепи, главным образом из остатков D-ксилозы. К ксилозе могут присоединяться остатки галактозы и фукозы. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

   Пектиновые  вещества — это полимерные соединения углеводного типа. Они обусловливают  высокую оводненность клеточной оболочки. Важнейшим представителем пектиновых веществ являются рамногалактуронаны, представляющие собой цепочку остатков oc-D-галактуроновой кислоты (Гк), к которой в ряде мест присоединяются остатки рамнозы. Рамноза (С6Н1205) — производное глюкозы. Вследствие внедрения рамнозы основная цепь этого полисахарида приобретает зигзагообразную форму. В некоторых случаях четвертый углеродный атом рамнозы замещен на галактозу. Пектиновые вещества содержат большое количество карбоксильных групп и могут эффективно связывать ионы двухвалентных металлов, например, Са+2, что играет роль в объединении компонентов клеточной стенки. Ионы Са+2 могут обмениваться на такие ионы как Ки Н+, что обеспечивает катионообменную способность.

   Клеточные стенки содержат также белок экстенсии (до 10%). Это гликопро-теид, у которого около 30% всех аминокислот белковой части предстаачено оксипролином. К оксипролину присоединяются углеводные цепочки, состоящие из четырех остатков моносахара арабинозы. По исследованиям Д. Лампорта, именно цепочки арабинозы придают устойчивость структуре экстенсина. Вместе с тем экстенсии является связующим звеном между полисахаридами, входящими в состав клеточной оболочки, соединяя их в единый каркас. Наряду с этим в состав клеточной оболочки входят специфические углевод-связывающие белки пектины, согласно современным представлениям участвующие в обеспечении узнавания и взаимодействия клеток, рецепторных свойств, защиты от инфекций. В клеточных оболочках локализован ряд ферментов, по преимуществу гидролаз (глюкозидазы, гликозидазы и др.). Эти ферменты, расщепляя соответствующие связи, могут участвовать в растяжении клеточной оболочки.

   

   Клеточная оболочка способна к утолщению и  видоизменению. В результате этого  образуется ее вторичная структура. Утолщение оболочки происходит путем  наложения новых слоев на первичную  оболочку. Ввиду того, что наложение  идет уже на твердую оболочку, фибриллы целлюлозы в каждом слое лежат  параллельно, а в соседних слоях  — под углом друг к другу. Предполагается, что за ориентацию микрофибрилл целлюлозы ответственны микротрубочки. Этим достигается значительная прочность (и твердость) вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях до 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами — лигнином, суберином. Лигнин — это полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. Мономерами суберина являются насыщенные и ненасыщенные оксожирные кислоты. Пропитанные суберином клеточные стенки (опробковение оболочки) становятся труднопроницаемыми для воды и растворов. На поверхности клеточной стенки могут откладываться кутин и воск. Кутин состоит из оксожирных кислот и их солей, выделяется через клеточную стенку на поверхность эпидермальной клетки и участвует в образовании кутикулы. В состав кутикулы могут входить воска, которые также секретирует цитоплазма. Кутикула препятствует испарению воды, регулирует водно-тепловой режим тканей растений.

   Исследования  позволили дать предположительную  модель взаимосвязи и взаиморасположения всех перечисленных веществ в клеточной стенке. Согласно этой модели в первичной клеточной оболочке микрофибриллы целлюлозы располагаются либо беспорядочно, либо перпендикулярно (в основном) продольной оси клетки. Между микрофибриллами целлюлозы находятся молекулы гемицеллюлозы, которые, в свою очередь, связаны через пектиновые вещества с белком. При этом последовательность веществ следующая: целлюлоза — гемицеллюлозы — пектиновые вещества — белок — пектиновые вещества — гемицеллюлозы — целлюлоза. Микрофибриллы целлюлозы и вещества матрикса оболочки связаны между собой. Единственными нековалентными связями являются водородные между целлюлозными микрофибриллами и гемицеллюлозой (по преимуществу ксилоглюканом). Между ксилоглюканом и пектиновыми веществами, так же как и между пектиновыми веществами и белком экстенсином, возникают ковалентные связи.

Информация о работе Физиология белковой клетки