Биотехнология ферментов

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 13:19, реферат

Краткое описание

Познание роли ферментов для всего живого на Земле послужило основой для становления и развития технологии ферментных препаратов как науки и для создания промышленного производства наиболее широко используемых ферментных препаратов. Применение этих препаратов помогло существенно изменить, интенсифицировать и усовершенствовать многие существующие технологии или даже создать принципиально новые высокоэффективные процессы. Применение ферментных препаратов различной степени очистки позволило не только улучшить показатели и выходы в различных биотехнологических процессах, но позволило усовершенствовать кормопроизводство, повысить усвояемость кормов, сделать более целенаправленным и эффективным действие синтетических моющих средств, улучшить качество косметических препаратов, создать целый арсенал специфических, чувствительных и точных аналитических методов, фналадить производство лекарственных и профилактических средств для медицинской промышленности и т. д.

Прикрепленные файлы: 1 файл

биотехнолог.docx

— 76.96 Кб (Скачать документ)

 

Технология ферментных препаратов

Ферменты как биокатализаторы  обладают рядом уникальных свойств, например, таких как высокая каталитическая активность и избирательность действия. В ряде случаев ферменты обладают абсолютной специфичностью, катализируя  превращение только одного вещества. Для каждого фермента существует свой оптимум рН, при котором его  каталитическое действие максимально. При резком изменении рН ферменты инактивируются из-за необратимой денатурации. Ускорение реакции при повышении  температуры также лимитировано определенными пределами, поскольку  уже при температуре 40-50оС многие ферменты денатурируют. Эти свойства ферментов приходится учитывать  при разработке технологии нового препарата.

Поскольку ферменты - вещества белковой природы, в смеси с другими  белками их количество определить практически  невозможно. Наличие фермента в препарате  может быть установлено лишь по протеканию той реакции, которую катализирует фермент. При этом количественную оценку содержания фермента можно дать, определив  либо количество образовавшихся продуктов  реакции, либо количество израсходовавшегося субстрата. За единицу активности фермента принимают то его количество, которое  катализирует превращение одного микромоля субстрата в 1 минуту при заданных стандартных условиях - стандартная единица активности.

По решению Международного биохимического союза активность решено определять при t = 30оС по начальной  скорости реакции, когда концентрация насыщения фермента и временная  зависимость близка к кинетике реакции  нулевого порядка. Остальные параметры  реакции индивидуальны для каждого  фермента. Активность ферментного препарата  выражается в микромолях субстрата, прореагировавшего под действием 1 мл ферментного раствора или 1 грамма препарата в оптимальных условиях за 1 минуту. Если ферментный препарат не содержит балласта, то его активность выражается в тех же стандартных единицах на 1 мг фермента. Если же есть балласт, то активность считается на 1 мг белка в ферментном препарате. Активность выпускаемого препарата - важнейший нормируемый показатель качества.

Основную часть ферментов, получаемых промышленным способом, составляют гидролазы. К ним относятся, в  первую очередь амилолитические ферменты: α-амилаза, β-амилаза, глюкоамилаза. Их основная функция - гидролиз крахмала и гликогена. Крахмал при гидролизе расщепляется на декстрины, а затем до глюкозы. Эти ферменты применяются в спиртовой промышленности, хлебопечении.

Протеолитические ферменты образуют класс пептидгидролаз. Их действие заключается в ускорении гидролиза пептидных связей в белках и пептидах. Важная их особенность - селективный характер действия на пептидные связи в белковой молекуле. Например, пепсин действует только на связь с ароматическими аминокислотами, трипсин - на связь между аргинином и лизином. В промышленности протеолитические ферменты классифицируют по способности проявлять активность в определенной области рН:

рН 1.5 - 3.7 - кислые протеазы;

рН 6.5 - 7.5 - протеазы;

pH > 8.0 - щелочные протеазы.

Протеазы находят широчайшее применение в разных отраслях промышленности:

мясная - для смягчения  мяса;

кожевенная - смягчение шкур;

кинопроизводство - растворение  желатинового слоя при регенерации  пленок;

парфюмерная - добавки в зубную пасту, кремы, лосьоны;

производство моющих средств - добавки для удаления загрязнений  белковой природы;

медицина - при лечении  воспалительных процессов, тромбозов  и т.д.

Пектолитические ферменты уменьшают молекулярную массу и снижают вязкость пектиновых веществ. Пектиназы делятся на две группы - гидролазы и трансэлиминазы. Гидралазы отщепляют метильные остатки или разрывают гликозидные связи. Трансэлиминазы ускоряют негидролитическое расщепление пектиновых веществ с образованием двойных связей. Применяются в текстильной промышленности (вымачивание льна перед переработкой), в виноделии - осветление вин, а также при консервировании фруктовых соков.

Целлюлолитические ферменты очень специфичны, их действие проявляется в деполимеризации молекул целлюлозы. Обычно используются в виде комплекса, доводящего гидролиз целлюлозы до глюкозы (в гидролизной промышленности). В медицинской промышленности их используют для выделения стероидов из растений, в пищевой - для улучшения качества растительных масел, в сельском хозяйстве - как добавки в комбикорма для жвачных животных.

Существует ряд факторов, влияющих на биосинтез ферментов. В  первую очередь, к ним относится  генетический. Состав и количество синтезируемых ферментов наследственно детерминированы. Применяя мутагены можно изменить генетические свойства микроорганизмов и получить штаммы с ценными для промышленности свойствами. К мутагенным факторам относятся ионизирующее и неионизирующее излучения, изотопы, антибиотики, другие химические соединения, преобразующие наследственные элементы клетки. Несмотря на определяющую роль генетического фактора в биосинтезе ферментов, производительность биотехнологических процессов зависит и от состава питательной среды. При этом важно не только наличие источников основных питательных веществ, но и веществ, играющих роль индукторов или репрессоров биосинтеза данного конкретного фермента или их групп. Механизм этого явления еще не вполне изучен, но сам факт должен учитываться при выборе технологии.

По характеру культивирования  все технологические процессы производства ферментных препаратов делятся на две  большие группы: глубинный и поверхностный  методы.

 

Глубинный метод производства ферментов

 
В этом случае микроорганизмы выращиваются в жидкой питательной среде. Технически более совершенен, чем поверхностный, так как легко поддается автоматизации и механизации. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.

 

Производство ферментов  при поверхностном культивировании  продуцентов.

 

При поверхностном методе культура растет на поверхности твердой  увлажненной питательной среды. Мицелий полностью обволакивает и довольно прочно скрепляет твердые  частицы субстрата, из которого получают питательные вещества. Поскольку  для дыхания клетки используют кислород, то среда должна быть рыхлой, а слой культуры-продуцента небольшим.

Выращивание производственной культуры происходит обычно в асептических условиях, но среду и кюветы необходимо простерилизовать.

Ферментация –  главная стадия любого биотехнологического  процесса. Глубинная и поверхностная  ферментация.

 

Процесс культивации микроорганизмов  – ферментация – начинается с  того момента, когда заранее подготовленный посевной материал вводится в реактор. Размножение культуры микроорганизма характеризуется четырьмя временными фазами: лаг-фаза; экспоненциальная; стационарная; вымирание.

 

 

Во время лаг-фазы метаболизм клеток направлен на то, чтобы синтезировать ферменты для размножения в конкретной среде. Длительность лаг-фазы может быть разной для одной и той же культуры и среды, так как на неё влияет множество факторов. Например, сколько в посевном материале было нерастущих клеток.

Экспоненциальная фаза –  это период роста, когда происходит деление клеток с экспоненциальным ростом численности популяции. Этот период ограничен во времени количеством  питательной среды. Питательные  вещества кончаются или рост клеток замедляется из-за выделения токсичного метаболита.

Рост прекращается и наступает  так называемая стационарная фаза. Метаболизм продолжается и может  начаться выделение вторичных метаболитов. Во многих случаях целью является получение не биомассы, а именно вторичных метаболитов, так как  они могут использоваться для  получения ценных продуктов и препаратов. В этих случаях ферментация целенаправленно удерживается в стационарной фазе.

Если продолжать фермениацию дальше, клетки постепенно будут терять активность, т.е. вымирать.

По характеру подкормки  процессы культивирования бывают трёх видов:

-периодический;

-подкормочный;

-непрерывный.

В периодическом процессе реактор заполняется свежей питательной  средой, потом в него вводится посевной материал. По окончании ферментации  содержимое выводится на стадию выделения, реактор моется и стерилизуется, и всё начинается снова.

В подкормочном процессе непрерывно или порциями в реактор вводится свежая питательная среда. Скорость ввода обычно определяется скоростью  роста или биосинтеза. Когда реактор  наполняется, его частично или полностью  опорожняют. Процесс завершается  или продолжается.

В непрерывном процессе культивационная  жидкость выводится из реактора непрерывно. Такой процесс может протекать  очень долго, и его длительность обычно определяется производственной необходимостью и техническими факторами.

Наиболее распространена ферментация с подкармливанием, её чаще всего применяют для биопродуктов. В этом случае устраняются недостатки периодического процесса путём небольших технических изменений.

Непрерывные процессы чаще всего применяются при производстве биохимикатов в больших количествах. Эти процессы самые экономичные, но для их реализации нужны значительные технические преобразования и более глубокое понимание кинетики данной ферментации.

Стадия ферментации является основной стадией в биотехнологическом процессе, так как в ее ходе происходит взаимодействие продуцента с субстратом и образование целевых продуктов (биомасс, эндо- и экзопродуктов). Эта стадия осуществляется в биохимическом реакторе (ферментере) и может быть организована в зависимости от особенностей используемого продуцента и требований к типу и качеству конечного продукта различными способами. Ферментация может проходить в строго асептических условиях и без соблюдения правил стерильности (так называемая «незащищенная» ферментация); на жидких и на твердых средах; анаэробно и аэробно. Аэробная ферментация, в свою очередь, может протекать поверхностно или глубинно (во всей толще питательной среды).

Глубинная ферментация проводится в аппаратах емкостью 50 м3 с заполнением на 70–75 %. В качестве посевного материала используют мицелий, подрощенный также в условиях глубинной культуры. В производственном аппарате, куда подрощенный мицелий передается по стерильной посевной линии, питательная среда содержит 12–15 % сахаров. Ферментацию проводят при 31–32° при непрерывном перемешивании. В ходе процесса кислотообразования (5–7 суток) реализуют интенсивный режим аэрации (до 800–1000 м3/ч) с дробным добавлением сахаров, 2–3 подкормки. Выход лимонной кислоты составляет от 5 до 12 %, остаточная концентрация сахаров – 0.2–1.5 %, доля цитрата – 80–98 % от суммы всех органических кислот.

Получить производные  антибиотиков можно с помощью  как химического, так и биологического синтеза. Известен и комбинированный  способ получения препаратов. В этом случае ядро молекулы антибиотика формируется при биосинтезе с помощью соответствующих микроорганизмов-продуцентов, а «достройка» молекулы осуществляется методом химического синтеза. Полученные этим способом антибиотики называются полусинтетическими. Так были получены и нашли широкое применение в клинике весьма эффективные полусинтетические пенициллины (метициллин, оксациллин, ампициллин, карбенициллин) и цефалоспорины (цефалотин, цефалоридин) с новыми по сравнению с природными антибиотиками ценными терапевтическими свойствами.

Все эти данные, накопленные  в процессе становления и развития науки об антибиотиках, потребовали  уточнения термина «антибиотики». В настоящее время антибиотиками  следует называть химические соединения, образуемые различными микроорганизмами в процессе их жизнедеятельности, а  также производные этих соединений, обладающие способностью в незначительных концентрациях избирательно подавлять  рост микроорганизмов или вызывать их гибель. Вполне вероятно, что и  эта формулировка с дальнейшим прогрессом антибиотической науки будет  уточняться.

В первые годы после открытия антибиотиков их получали с использованием метода поверхностной ферментации. Этот метод заключался в том, что  продуцент выращивали на поверхности  питательной среды в плоских  бутылях (матрацах). Чтобы получить сколько-нибудь заметные количества антибиотика, требовались тысячи матрацев, каждый из которых после слива культуралыюй жидкости необходимо было мыть, стерилизовать, заполнять свежей средой, засевать продуцентом и инкубировать в термостатах. Малопроизводительный способ поверхностной ферментации (поверхностного биосинтеза) не мог удовлетворить потребностей в антибиотиках. В связи с этим был разработан новый высокопроизводительный метод глубинного культивирования (глубинной ферментации) микроорганизмов – продуцентов антибиотиков. Это позволило в короткий срок создать и развить новую отрасль промышленности, выпускающую антибиотики в больших количествах.

Метод глубинного культивирования  отличается от предыдущего тем, что  микроорганизмы-продуценты выращивают не на поверхности питательной среды, а во всей ее толще. Выращивание продуцентов  ведут в специальных чанах (ферментаторах).

Применение ферментных препаратов

Широкое применение в нашей  стране и за рубежом находят ферментные препараты и продукты, обладающие амилолитической активностью.

В нашей стране выпускают  следующие амилолитические ферментные препараты:

с активной &-амилазой — Амилоризин П10Х, Амилосубтилин Г10Х; глюкоамилазой — Глюкоамилаза очищенная. Кроме того, производятся белый солод и солодовые экстракты с активной &-амилазой, которые вырабатываются из проросшего зерна ржи или ячменя.

Под действием амилолитических ферментов повышается содержание сбраживаемых сахаров в тесте, что приводит к интенсификации процесса созревания полуфабрикатов, увеличению количества декстринов, что способствует сохранению свежести хлеба.

При добавлении ферментных препаратов в оптимальных дозировках увеличивается объем хлебобулочных  изделий, улучшается структура их пористости, мякиш становится более нежным, улучшаются вкус и аромат хлеба, корка приобретает  более интенсивную окраску и  глянец.

Информация о работе Биотехнология ферментов