Влияние на организм человека электромагнитных полей ионизирующих излучений

Автор работы: Пользователь скрыл имя, 04 Июля 2013 в 14:01, контрольная работа

Краткое описание

Быстрое развитие ядерной энергетики и широкое внедрение источников ионизирующих излучений в различных областях науки, техники и народного хозяйства создали потенциальную угрозу радиационной опасности для человека и загрязнения окружающей среды радиоактивными веществами. Поэтому вопросы защиты от ионизирующих излучений (или радиационная безопасность) превращаются в одну из важнейших проблем.

Содержание

Введение……………………………………………………………………....стр.2
1.Влияние на организм человека электромагнитных полей, лазерного и ультрафиолетового излучения…………………………………………….…стр.3
2. Ионизирующие излучения и защита от них: нормы радиационной безопасности
2.1 Источники и область применения ионизирующих излучений………...стр.8
2.2 Единицы измерения радиоактивности и доз облучений…….…….….стр.10
2.3 Биологическое действие ионизирующих излучений и способы защиты от них………………………………………………………………...………….стр.12
2.4 Защита от ионизирующих излучений…………………………...……..стр.16
Заключение……………………………………………………………….….стр.19
Список использованной литературы…………………………………….....стр.20

Прикрепленные файлы: 1 файл

БЖД.docx

— 43.38 Кб (Скачать документ)

Рентгеновское излучение  представляет собой электромагнитное излучение высокой частоты и  с короткой длиной волны, возникающее  при бомбардировке вещества потоком  электронов. Важнейшим свойством  рентгеновского излучения является его большая проникающая способность. Рентгеновские лучи могут возникать  в рентгеновских трубках, электронных  микроскопах, мощных генераторах, выпрямительных лампах, электронно-лучевых трубках  и др.

Гамма-излучение относится  к электромагнитному излучению  и представляет собой поток квантов  энергии, распространяющихся со скоростью  света. Они обладают более короткими  длинами волн, чем рентгеновское  излучение. Гамма-излучение свободно проходит через тело человека и другие материалы без заметного ослабления и может создавать вторичное  и рассеянное излучение в средах, через которые проходит. Интенсивность  облучения гамма-лучами снижается  обратно пропорционально квадрату расстояния от точечного источника.

Нейтронное излучение - это  поток нейтральных частиц. Эти  частицы вылетают из ядер атомов при  некоторых ядерных реакциях, в  частности, при реакциях деления  ядер урана и плутония. Вследствие того, что нейтроны не имеют электрического заряда, нейтронное излучение обладает большой проникающей способностью. В зависимости от кинетической энергии  нейтроны условно делятся на быстрые, сверхбыстрые, промежуточные, медленные  и тепловые. Нейтронное излучение  возникает при работе ускорителей заряженных частиц и реакторов, образующих мощные потоки быстрых и тепловых нейтронов. Отличительной особенностью нейтронного излучения является способность превращать атомы стабильных элементов в их радиоактивные изотопы, что резко повышает опасность нейтронного облучения.

 

2.2 Единицы измерения  радиоактивности и доз облучений

 

Вещества, способные создавать  ионизирующие излучения, различаются активностью (А), т.е. числом радиоактивных превращений в единицу времени. В системе СИ за единицу активности принято одно ядерное превращение в секунду (распад/с). Эта единица получила название беккерель (Бк). Внесистемной единицей измерения активности является кюри (Ки), равная активности нуклида, в котором происходит 3,7 · 1010 актов распада в одну секунду, т.е.

1 Ки = 3,7·1010Бк.

Единице активности кюри соответствует  активность 1 г радия (Rа).

Для характеристики ионизирующих излучений введено понятие дозы облучения. Различают три дозы облучения: поглощённая, эквивалентная и экспозиционная.

Степень, глубина и форма  лучевых поражений, развивающихся  среди биологических объектов при  воздействии на них ионизирующего  излучения, в первую очередь зависят  от величины поглощённой энергии  излучения или поглощённой дозы (Дпогл).

Поглощённая доза - энергия, поглощённая единицей массы облучаемого вещества.

За единицу поглощённой  дозы облучения принимается грей (Гр), определяемый как джоуль на килограмм (Дж/кг). Соответственно

1 Гр = 1 Дж/кг.

В радиобиологии и радиационной гигиене широкое применение получила внесистемная единица поглощённой  дозы - рад. Рад - это такая поглощённая  доза, при которой количество поглощённой  энергии в 1г любого вещества составляет 100 эрг независимо от вида и энергии  излучения. Соразмерность грея и  рада следующая:

1 Гр= 100 рад.

В связи с тем, что одинаковая поглощённая доза различных видов  ионизирующего излучения вызывает в единице массы биологической  ткани различное биологическое  действие, введено понятие эквивалентной дозы (Дэкв), которая определяется как произведение поглощённой дозы на средний коэффициент качества действующих видов ионизирующих излучений.

Коэффициент качества (Ккач) характеризует зависимость неблагоприятных биологических последствий облучения человека от способности ионизирующего излучения различного вида передавать энергию облучаемой среде (табл. 3).

По существу, биологические  эффекты, вызываемые любыми ионизирующими  излучениями, сравниваются с эффектом от рентгеновского и гамма-излучения.

В качестве единицы измерения  эквивалентной дозы в системе  СИ принят зиверт (Зв). Зиверт - эквивалентная  доза любого вида ионизирующего излучения, поглощённая 1 кг биологической ткани  и приносящая такой же биологический  эффект (вред), как и поглощённая  доза фотонного излучения в 1 Гр. Существует также внесистемная единица  эквивалентной дозы ионизирующего  излучения - бэр (биологический эквивалент рентгена). При этом соразмерность  следующая:

Дэкв = Дпогл ·Ккач

 

или 1 Зв = 1 Гр · Ккач;

1 Зв = 100 рад · Ккач = 100 бэр.

 

Для оценки эквивалентной  дозы, полученной группой людей (персонал объекта народного хозяйства, жители населённого пункта и т.п.), используется понятие коллективная эквивалентная доза (Дэкв.к.) - это средняя для населения доза, умноженная на численность населения (в человеко-зивертах).

Понятие экспозиционная доза (Дэксп) служит для характеристики рентгеновского и гамма-излучения и определяет меру ионизации воздуха под действием этих лучей. Она равна дозе фотонного излучения, при котором в 1 кг атмосферною воздуха возникают ионы, несущие заряд электричества в 1 кулон (Кл).

Соответственно:

 

Дэксп = КЛ/КГ.

 

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучения  является рентген (Р).

При этом соразмерность следующая:

1 Р = 2,58 · 10-4 Кл/кг или 1 Кл/кг =3,88 · 103 Р.

Поглощённая, эквивалентная  и экспозиционная дозы, отнесённые к единице времени, носят название мощности соответствующих доз. 
Например

1. Мощность поглощённой дозы (Рпогл) - Гр/с или рад/с.

2. Мощность эквивалентной дозы (Рэкв) - Зв/с или бэр/с.

3. Мощность экспозиционной дозы (Рэксп) - Кл/(кг · с) или Р/с.

Для упрощенной оценки информации по однотипному ионизирующему излучению  можно использовать следующие соотношения.

1. 1 Гр = 100 бэр = 100 Р = 100 рад = 1 Зв (с точностью до 10-15%);

2. радиоактивное загрязнение плотностью 1 Ки/м2 эквивалентно мощности экспозиционной дозы 10 Р/ч, или мощность экспозиционной дозы ионизирующего излучения 1 Р/ч соответствует загрязнению в 10 мкКи/см2.

 

2.3 Биологическое  действие ионизирующих излучений  и способы защиты от них

 

Различают два вида эффекта  воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения  на организм были выявлены следующие  особенности: высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме, наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений, действие от малых доз может суммироваться или накапливаться, генетический эффект - воздействие на потомство, различные органы живого организма имеют свою чувствительность к облучению, не каждый организм (человек) в целом одинаково реагирует на облучение, облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение  может оказывать влияние на организм как при внешнем (особенно рентгеновское  и гамма-излучение), так и при  внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при  попадании внутрь организма через  лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего  излучения вода, являющаяся составной  частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и  окислители взаимодействуют с молекулами органического вещества ткани, окисляя  и разрушая её. Нарушается обмен  веществ. Происходят изменения в  составе крови - снижается уровень  эритроцитов, лейкоцитов, тромбоцитов  и нейтрофилов. Поражение органов  кроветворения разрушает иммунную систему человека и приводит к  инфекционным осложнениям.

Местные поражения характеризуются  лучевыми ожогами кожи и слизистых  оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельные поглощённые  дозы для отдельных частей тела следующие:

  1. Голова - 20 Гр;
  2. Нижняя часть живота - 50 Гр;
  3. Грудная клетка -100 Гр;
  4. Конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную  дозу, человек может погибнуть  во время облучения ("смерть под  лучом").

Биологические нарушения  в зависимости от суммарной поглощённой  дозы излучения представлены в табл. 4

В зависимости от типа ионизирующего  излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего  излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.

В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:

А - персонал, т.е. лица, постоянно  или временно работающие с источниками  ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые  на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие  подвергаться воздействию ионизирующих излучений;

В - всё население.

 

Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения (табл.5).

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Каждый житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос - до 30 мбэр, почва - до 38 мбэр, радиоактивные элементы в тканях человека - до 37 мбэр, газ радон - до 80 мбэр и другие источники).

Искусственные источники  добавляют ежегодную эквивалентную  дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования - 100-150 мбэр, просмотр телевизора -1-3 мбэр, ТЭЦ на угле - до 6 мбэр, последствия  испытаний ядерного оружия - до 3 мбэр и другие источники).

Всемирной организацией здравоохранения (ВОЗ) предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

 

2.4 Защита от  ионизирующих излучений

 

Ниже предлагаются рекомендации общего характера по защите от ионизирующего  излучения разного типа.

От альфа-лучей можно  защититься путём:

  1. Увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  2. Использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  3. Исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-излучения  используют:

  1. Ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  2. Методы и способы, исключающие попадание источников бета-излучения внутрь организма.

Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что  эти виды излучения отличаются большой  проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  1. У расстояния до источника излучения;
  2. Сокращение времени пребывания в опасной зоне;
  3. Экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
  4. Использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  5. Использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  6. Дозиметрический контроль внешней среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего  излучения снижается в соответствии с величиной коэффициента ослабления (Косл). Некоторые величины Косл приведены в табл. 5.

Информация о работе Влияние на организм человека электромагнитных полей ионизирующих излучений