Виды и сущность контроля изоляции в электрических сетях

Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 08:39, контрольная работа

Краткое описание

Изоляция - это слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструкция из непроводящего материала, с помощью которой токоведущие части отделяются от остальных частей электрооборудования. Выделяют следующие виды изоляции: рабочая — электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током; дополнительная — электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции; двойная — изоляция, состоящая из рабочей и дополнительной изоляции;

Прикрепленные файлы: 1 файл

19 Объясните виды и сущность контроля изоляции в электрических сетях.doc

— 56.50 Кб (Скачать документ)

19. Объясните виды и сущность контроля изоляции в электрических сетях.

Изоляция - это слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструкция из непроводящего материала, с помощью которой токоведущие части отделяются от остальных частей электрооборудования. Выделяют следующие виды изоляции:

  • рабочая — электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током;
  • дополнительная — электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
  • двойная — изоляция, состоящая из рабочей и дополнительной изоляции;
  • усиленная — улучшенная рабочая изоляция, которая обеспечивает такую же защиту от поражения электрическим током, как и двойная изоляция;
  • сопротивление изоляции должно быть не менее 0.5 МОм.

Контроль  изоляции.

Для контроля применяют:

1.      Измерение   в отключенной установке один раз в год, а также вне очереди при обнаружения дефектов и после ремонта.    

2.      Испытание повышенным напряжением в отключенной установке, т.е. испытывают эл. прочность изоляции (способность выдерживать рабочее напряжение) и выявляют дефекты.

 в течении 1 минуты

3.      Непрерывный  контроль и измерение   без отключения рабочего напряжения.

а) Метод 3-х вольтметров.

 

 

Рис.10.


В сеть между  каждой фазой и землей включают вольтметры с большим омическим сопротивлением. Способ наиболее простой, но имеет недостатки:

·       схема не реагирует на симметричное снижение   всех фаз;

·       на показания вольтметров оказывают влияние емкостные составляющие сопротивлений изоляции. 

 

б) Метод наложения оперативного тока на рабочий.

Рис.11.

 

Ток утечки зависит  от состояния изоляции 

Преимущества: схема реагирует на симметричное и несимметричное снижение  ; имеется сигнализация о предельно – допустимом снижении  ; входное сопротивление схемы высокое, что обеспечивает надежность.

 

Испытания изоляции повышенным напряжением позволяют  выявить локальные дефекты, не обнаруживаемые иными методами кроме того, такой метод испытаний является прямым способом контроля способности изоляции выдерживать воздействия перенапряжений и дает определенную уверенность в качестве изоляции. К изоляции прикладывается испытательное напряжение, превышающее рабочее напряжение, и нормальная изоляция выдерживает испытания, а дефектная пробивается.         

 При профилактических  или послеремонтных испытаниях проверяется способность изоляции проработать без отказа до следующих очередных испытаний. Контроль изоляции повышенным напряжением дает только косвенную оценку длительной электрической прочности изоляции и основная его задача - проверка отсутствия грубых сосредоточенных дефектов.         

 Испытательные напряжения  для нового оборудования на заводах-изготовителях определяется ГОСТ 1516.2-97, а при профилактических испытаниях величины испытательных напряжений принимаются на 10 – 15 % ниже заводских норм. Этим снижением учитывается старение изоляции и ослабляется опасность накопления дефектов, возникающих при испытаниях.         

 Контроль изоляции  повышенным напряжением в условиях  эксплуатации проводится для  некоторых видов оборудования (вращающиеся машины, силовые кабели) с номинальным напряжением не выше 35 кВ, поскольку при более высоких напряжениях испытательные установки слишком громоздки.         

 При испытаниях  повышенным напряжением используются  три основных вида испытательных  напряжений: повышенное напряжение  промышленной частоты, выпрямленное  постоянное напряжение и импульсное  испытательное напряжение (стандартные  грозовые импульсы).

Основным видом испытательного напряжения является напряжение промышленной частоты. Время приложения такого напряжения - 1 мин и изоляция считается выдержавшей испытания, если за это время не наблюдалось пробоя или частичных повреждений изоляции. В некоторых случаях проводят испытания напряжением повышенной частоты (обычно 100 или 250 Гц).

При большой  емкости испытуемой изоляции (при  испытании кабелей, конденсаторов) требуется применение испытательной  аппаратуры большой мощности, поэтому  такие объекты чаще всего испытываются повышенным постоянным напряжением. Как правило, при постоянном напряжении диэлектрические потери в изоляции, приводящие к ее нагреву, на несколько порядков ниже, чем при переменном напряжении такого же эффективного значения кроме того, и интенсивность частичных разрядов намного ниже. При таких испытаниях нагрузка на изоляцию существенно меньше, чем при испытаниях переменным напряжением, поэтому для пробоя дефектной изоляции требуется более высокое постоянное напряжение, чем испытательное переменное напряжение.

При испытаниях постоянным напряжением дополнительно контролируется ток утечки через изоляцию. Время  приложения постоянного испытательного напряжения составляет от 5 до 15 мин. Изоляция считается выдержавшей испытания, если она не пробилась, а значение тока утечки к концу испытаний не изменилось или снизилось.

Недостаток постоянного  испытательного напряжения состоит  в том, что это напряжение распределяется по толще изоляции в соответствии с сопротивлениями слоев, а не в соответствии с емкостями слоев, как при рабочем напряжении или при перенапряжении. По этой причине отношения испытательных напряжений к рабочим напряжениям отдельных слоев изоляции получаются существенно разными.

Третьим видом испытательного напряжения являются стандартные грозовые импульсы напряжения с фронтом 1,2 мкс и длительностью до полуспада 50 мкс. Испытания импульсным напряжением производят потому, что изоляция в процессе эксплуатации подвергается воздействию грозовых перенапряжений со схожими характеристиками. Воздействие грозовых импульсов на изоляцию отличается от воздействия напряжения частотой 50 Гц из-за гораздо большей скорости изменения напряжения, приводящей к другому распределению напряжения по сложной изоляции типа изоляции трансформаторов кроме того, сам процесс пробоя при малых временах отличается от процесса пробоя на частоте 50 Гц, что описывается вольт-секундными характеристиками. По этим причинам испытаний напряжением промышленной частоты в ряде случаев оказывается недостаточно.

Воздействие грозовых перенапряжений на изоляцию часто сопровождается срабатыванием защитных разрядников, срезающих волну перенапряжения через несколько микросекунд после ее начала, и поэтому при испытаниях используют и импульсы, срезанные через 2 - 3 мкс после начала импульса (срезанные стандартные грозовые импульсы).

Амплитуда импульса выбирается исходя из возможностей оборудования, защищающего изоляцию от перенапряжений, с некоторыми запасами, и исходя из возможности накопления скрытых дефектов при многократном воздействии импульсных напряжений. Конкретные величины испытательных импульсов определяются по ГОСТ 1516.1-76.

Испытания внутренней изоляции проводят трехударным методом. На объект подается по три импульса положительной и отрицательной полярности, сначала полные, а затем срезанные. Интервал времени между импульсами - не менее 1 мин. Изоляция считается выдержавшей испытания, если во время испытания не произошло ее пробоев и не обнаружено повреждений. Методика обнаружения повреждений довольно сложна и обычно проводится осциллографическими методами.

Внешняя изоляция оборудования испытывается 15-ударным методом, когда к объекту с интервалом не менее 1 минуты прикладывается по 15 импульсов обеих полярностей, как полных, так и срезанных. Изоляция считается выдержавшей испытания, если в каждой серии из 15 импульсов было не более двух полных разрядов (перекрытий).


Информация о работе Виды и сущность контроля изоляции в электрических сетях