Аварии с выбросом радиоактивных веществ

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 20:30, реферат

Краткое описание

Цель работы: раскрыть данную тему, а также уделить должное внимание рекомендациям и вопросам неотложной помощи, профилактики и лечению лучевых поражений, т.к. это, по моему мнению, самое важное, что должен знать человек, столкнувшийся с такого типа аварией. Он должен знать, как можно уменьшить тяжесть облучения для себя и для окружающих и как вести себя в данной ситуации, а также уметь оказать первую помощь.

Содержание

1.ВВЕДЕНИЕ……………………………………………………………..3
2. Аварии с выбросом (угрозой выброса) радиоактивных веществ.
2.1.Ионизирующие излучения. Их виды……………………………4
2.2.Радиационно-опасные объекты (РОО)………………………….6
2.3.Классификация радиационных аварий. Фазы их развития...….8
2.4.Примеры аварий с выбросом радиоактивных веществ………..10
3.Последствия аварий с выбросом радиоактивных веществ………….13
4.Основные принципы противорадиационной защиты населения…...17
5. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии…………………………………………………….20
6.Заключение……………………………………………………………...21

Прикрепленные файлы: 1 файл

Документ Microsoft Office Word.docx

— 62.32 Кб (Скачать документ)

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Российский государственный профессионально-педагогический университет»

Социальный институт

Кафедра физиологии и безопасности жизнедеятельности

 

 

 

Реферат на тему: «Аварии с выбросом (угрозой выброса) радиоактивных веществ. Профилактика и последствия. Профилактические мероприятия при работе с источниками ионизирующего излучения»

 

 

 

 

 

Выполнила:

Студентка группы Срс-103

Курчина Е.О.

Проверила:

Махнева С.Г.

 

 

 

Екатеринбург 2013 

СОДЕРЖАНИЕ

1.ВВЕДЕНИЕ……………………………………………………………..3

2. Аварии с выбросом (угрозой выброса) радиоактивных веществ.

2.1.Ионизирующие излучения. Их виды……………………………4

2.2.Радиационно-опасные объекты (РОО)………………………….6

2.3.Классификация радиационных  аварий. Фазы их развития...….8

2.4.Примеры аварий с  выбросом радиоактивных веществ………..10

3.Последствия аварий с  выбросом радиоактивных веществ………….13

4.Основные принципы противорадиационной  защиты населения…...17

5. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии…………………………………………………….20

6.Заключение……………………………………………………………...21 
ВВЕДЕНИЕ

В настоящее время практически любая отрасль хозяйства и науки использует радиоактивные вещества и источники ионизирующих излучений. Высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем представляют и большую опасность для людей и окружающей среды. Атомные установки эксплуатируются на ледоколах, на крейсерах и подводных лодках, в космических аппаратах.  

Ядерные материалы приходится возить, хранить, перерабатывать. Это создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира. Возрастает опасность аварий с выбросом радиоактивных веществ, причинами которых могут быть нарушения технологических процессов, правил работы с источниками радиоактивности, их хранения и перевозки, некомпетентность персонала. 

В результате аварий могут возникнуть обширные зоны радиоактивного загрязнения местности и происходить обручение персонала ядерно - и радиационно-опасных объектов (РОО) и населения, что характеризует создавшуюся ситуацию как чрезвычайную. Степень опасности и масштабы этой ЧС будут определяться количеством и активностью выброшенных радиоактивных веществ, а также энергией и качеством сопровождающих их распад ионизирующих излучений. 

В своем реферате я постараюсь наиболее полно раскрыть данную тему, а также уделить должное внимание рекомендациям и вопросам неотложной помощи, профилактики и лечению лучевых поражений, т.к. это, по моему мнению, самое важное, что должен знать человек, столкнувшийся с такого типа аварией. Он должен знать, как можно уменьшить тяжесть облучения для себя и для окружающих и как вести себя в данной ситуации, а также уметь оказать первую помощь.

 

2.Аварии с выбросом (угрозой выброса) радиоактивных  веществ.

                   2.1 Ионизирующие излучения. Их виды.

 

Ионизирующее излучение, в частности радиоактивное, занимает особое место среди многочисленных факторов среды обитания человека, так или иначе влияющих на его здоровье и жизнь.

Ионизирующее излучение было обнаружено сравнительно недавно. В 1895 г. известный немецкий физик В. Рентген открыл излучение, названное его именем. С этого времени изучение ионизирующего излучения и ядерных реакций – стало одним из приоритетных направлений физики. Исследования дорого обошлись научному миру — около 4000 ученых отдали свои жизни, изучая эти явления.

Ионизирующее излучение представляет собой потоки заряженных и нейтральных частиц, а также электромагнитных волн. При прохождении через вещество ионизирующее излучение вызывает в нем ионизацию, т. е. превращение нейтральных, устойчивых атомов и молекул вещества в электрически заряженные, возбужденные неустойчивые частицы. Это сложное излучение, включающее в себя излучения нескольких видов:

1. Альфа-излучение — ионизирующее излучение, состоящее из альфа-частиц (ядер гелия), испускаемых при ядерных превращениях. Альфа-частицы распространяются на небольшие расстояния: в воздухе — не более 10 см, в био - ткани (живой клетке) — до 0,1 мм. Они полностью поглощаются листом бумаги и не представляют опасности для человека, за исключением случаев непосредственного контакта с кожей.[1]

2. Бета-излучение — электронное ионизирующее излучение, испускаемое при ядерных превращениях. Бета-частицы распространяются в воздухе до 15 м, в био - ткани — на глубину до 15 мм, в алюминии — до 5 мм. Одежда человека почти наполовину ослабляет их действие. Они практически полностью поглощаются оконными стеклами и любым металлическим экраном толщиной в несколько миллиметров. Но при контакте с кожей они также опасны.[1]

3. Гамма-излучение — фотонное (электромагнитное) ионизирующее излучение, испускаемое при ядерных превращениях и распространяющееся со скоростью света. Гамма - частицы распространяются в воздухе на сотни метров и свободно проникают сквозь одежду, тело человека и значительные толщи материалов. Это излучение считают самым опасным для человека.[1]

Главной характеристикой степени опасности ионизирующих излучений служит доза излучения: количество энергии ионизирующего излучения, поглощаемое 1 г вещества.

Дозу излучения принято измерять в рентгенах (Р). А для оценки последствий облучения человека различными видами излучений применяют специальную единицу измерения дозы облучения — бэр (биологический эквивалент рентгена).

Область применения ионизирующих излучений очень широка:

- в промышленности –  это гигантские реакторы для  атомных электростанций, для опреснения морской и засолённой воды, для получения трансурановых элементов; также их используют в активационном анализе для быстрого определения примесей в сплавах, металла в руде, качества угля и т.п.; для автоматизации различных процессов, как то: измерение уровня жидкости, плотности и влажности среды, толщины слоя;

- на транспорте – это мощные реакторы для надводных и подводных кораблей;

- в сельском хозяйстве  – это установки для массового  облучения овощей с целью предохранения  их от плесени, мяса – от  порчи; выведение новых сортов  путём генетических мутаций;

- в геологии – это  нейтронный каротаж для поисков  нефти, активационный анализ для поисков и сортировки металлических руд, для определения массовой доли примесей в естественных алмазах;

- в медицине – это  изучение производственных отравлений  методом меченых атомов, диагностика заболевания при помощи активационного анализа, метода меченых атомов и радиографии, лечение опухолей γ-лучами и β-частицами, стерилизация фармацевтических препаратов, одежды, медицинских инструментов и оборудования γ-излучением и т.д.[5]

Применение ионизирующих излучений имеет место даже в таких сферах деятельности человека, где это, на первый взгляд, кажется совершенно неожиданным. Например, в археологии. Кроме того, ионизирующие излучения используются в криминалистике (восстановление фотографий и обработка материалов).

 

 

               2.2. Радиационно-опасные объекты. (РОО)

Радиационно-опасный объект – объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении могут произойти массовые радиационные поражения.

Радиационная авария – происшествие на радиационно-опасном объекте, приводящее к выходу или выбросу радиоактивных веществ и (или) ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности. [1]

Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

К РОО относятся:

- предприятия ядерного  топливного цикла (ЯТЦ): урановой  и радиохимической промышленности, места переработки и захоронения радиоактивных отходов;

- атомные станции (АС): атомные  электрические станции (АЭС), атомные теплоэлектроцентрали  (АТЭЦ), 

- объекты с ядерными  энергетическими установками (ЯЭУ): корабельными ЯЭУ,  
космическими ЯЭУ, войсковыми атомными электростанциями (ВАЭС);

- ядерные боеприпасы (ЯБ) и склады для их хранения;

- исследовательские реакторы или ускорители частиц;

-морские суда с энергетическими установками;

Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем заодно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

 

2.3. Классификация  радиационных аварий.

 

   Фазы развития радиационных аварий.

Радиационные аварии подразделяются на:

-локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;

-местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;

-общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм. [3]

 

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и за проектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

Информация о работе Аварии с выбросом радиоактивных веществ