Происхождение и структура Солнечной системы

Автор работы: Пользователь скрыл имя, 15 Января 2014 в 12:50, реферат

Краткое описание

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений. Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость

Содержание

Происхождение Солнечной системы………………………………..3
Теория Канта…………………………………………………………….3
Небулярная теория Лапласа………………………………………….4
Возникновение и развитие планетной системы…………………...7
Эволюция Солнечной системы……………………………………….8
Структура Солнечной системы…………………………………….....12
Гипотеза Джинса образования планет Солнечной системы…....14
Заключение……………………………………………………………….19
Список использованной литературы………………………………...20

Прикрепленные файлы: 1 файл

Происхождение и структура Солнечной системы.rtf

— 1.89 Мб (Скачать документ)

 

 

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ

ИНСТИТУТ МАРКЕТИНГА  (ИМ)

СПЕЦИАЛЬНОСТЬ МАРКЕТИНГ

 

 

 

 

 

 

 

 

Реферат на тему:

«Происхождение и структура Солнечной системы»

 

 

 

 

 

 

 

                                                                    Выполнила: студентка 1 курса                       группы ИМ-2 Никонова Ирина

                                                         Преподаватель: Горбатова Р.К.

 

 

 

Москва - 2011

 

Содержание

 

Происхождение Солнечной системы………………………………..3

Теория Канта…………………………………………………………….3

Небулярная теория Лапласа………………………………………….4

Возникновение и развитие планетной системы…………………...7

Эволюция Солнечной системы……………………………………….8

Структура Солнечной системы…………………………………….....12

Гипотеза Джинса образования планет Солнечной системы…....14

Заключение……………………………………………………………….19

Список использованной литературы………………………………...20

 

 

 

Происхождение Солнечной системы

 

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, многие астрономы и физики XIX и XX столетий.

 

Теория Канта

 

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений. Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под действием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы. Таким образом, возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете, были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаровидные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газообразного вещества

 

Небулярная теория Лапласа

 

В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, несколько отличную от предыдущей. Лаплас полагал, что Солнце существовало первоначально в виде огромной раскаленной газообразной туманности (небулы) с незначительной плотностью, но зато колоссальных размеров.

Эта туманность, согласно Лапласу, первоначально медленно вращалась в пространстве. Под влиянием сил гравитации туманность постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробежной силой изменялось в пользу последней, так что в конечном счете масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет.

Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля, по П. Лапласу, представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей.

Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.

Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Эти две теории взаимно дополняли друг друга, поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Возникновение и развитие планетной системы

 

Астрономы прошлого предложили множество теорий образования Солнечной системы, а в сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце, вращаясь вокруг центра Галактики, захватило облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела - планетезимали.

Наша Солнечная система - не единственная во Вселенной. Элементы этой теории используются в современной космогонии. Согласно компьютерным расчетам, первоначальная масса газопылевого облака, в котором образовалась Солнечная система, была более 104 М. Первоначальный размер облака существенно превышал размеры Солнечной системы, а его состав был аналогичен тому, что наблюдается в плотных холодных межзвездных туманностях, то есть 99 % межзвездного газа и 1 % межзвездной пыли. У нескольких десятков звезд в настоящее время обнаружены планетные системы.

В настоящее время общепризнанной является теория формирования планетной системы в четыре этапа. Планетная система формируется из того же протозвездного пылевого вещества, что и звезда, и в те же сроки. Первоначальное сжатие протозвездного пылевого облака происходит при потере им устойчивости. Центральная часть сжимается самостоятельно и превращается в протозвезду. Другая часть облака с массой, примерно в десять раз меньше центральной части, продолжает медленно вращаться вокруг центрального утолщения, а на периферии каждый фрагмент сжимается самостоятельно. При этом стихает первоначальная турбулентность, хаотичное движение частиц. Газ конденсируется в твердое вещество, минуя жидкую фазу. Образуются более крупные твердые пылевые крупинки - частицы. Чем крупнее образовавшиеся крупинки, тем быстрее они падают на центральную часть пылевого облака. Часть вещества, обладающая избыточным моментом вращения, образует тонкий газопылевой слой - газопылевой диск. Вокруг протозвезды формируется протопланетное облако - пылевой субдиск. Протопланетное облако становится все более плоским, сильно уплотняется. Из-за гравитационной неустойчивости в пылевом субдиске образуются отдельные мелкие холодные сгустки, которые, сталкиваясь друг с другом, образуют все более массивные тела - планетезимали. В процессе формирования планетной системы часть планетезималей разрушилась в результате столкновений, а часть объединилась. Образуется рой допланетных тел размером около 1 км, количество таких тел очень велико - миллиарды. Затем допланетные тела объединяются в планеты. Аккумуляция планет продолжается миллионы лет, что очень незначительно по сравнению со временем жизни звезды. Протосолнце становится горячим. Его излучение нагревает внутреннюю область протопланетного облака до 400 К, образовав зону испарения. Под действием солнечного ветра и давления света легкие химические элементы (водород и гелий) оттесняются из окрестностей молодой звезды. В далекой области, на расстоянии свыше 5 а.е., образуется зона намерзания с температурой примерно 50 К. Это приводит к различиям в химическом составе будущих планет.

 

Эволюция Солнечной системы

 

Как только масса пропланеты достигает 1-2 масс Земли, она способна захватывать атмосферу. Протоюпитер буквально за сотню лет увеличил свою массу за счет захвата газов в десятки раз. Затем скорость аккреции падает, т.к. весь газ непосредственно на пути планеты уже вобран, а снаружи он поступает достаточно медленно (за счет диффузии). В нашей Солнечной системе на периферии образовались планеты-гиганты, способные удержать возле себя газовые оболочки. Сначала сформировались ядра планет-гигантов, а затем планеты «нарастили» себе оболочку из водорода и гелия. Двухступенчатая модель образования гигантов подтверждается фактами. Массы ядер планет-гигантов примерно одинаковы и равны 15-20 М. Количество водорода уменьшается с увеличением расстояния. Чем больше масса планеты, тем быстрее идет аккреция газа на нее. По современным расчетам, рост Юпитера продолжался десятки миллионов лет, а рост Сатурна - сотни миллионов. У планет-гигантов возникли собственные минидиски из газа и пыли, из которых затем сформировались кольца и многочисленные спутники. При формировании Юпитера именно в районе его орбиты проходила граница конденсации водяных паров. По современным расчетам, на более близких расстояниях, в поясе астероидов, летучие вещества находились в газообразном состоянии. Это привело к тому, что рост допланетных тел в районе будущего Юпитера ускорился, а в районе пояса астероидов замедлился. Именно поэтому массивный Юпитер обогнал по скорости роста протопланету, более близкую к Солнцу. Но после своего «рождения» Юпитер стал тормозить образование этой планеты в поясе астероидов. Разогнанные тяготением планет-гигантов сгустки вещества выбрасывались на окраину Солнечной системы, где становились кометами. Гравитационные возмущения со стороны Юпитера и сейчас сильно воздействуют на астероиды. Уран и Нептун росли еще медленнее. К тому времени газа в Солнечной системе из-за действия солнечного ветра осталось еще меньше, поэтому Уран и Нептун содержат меньше водорода в процентном содержании, чем Юпитер. Основными составляющими этих планет-гигантов являются вода, метан и аммиак. В центре Солнечной системы сформировались менее массивные планеты. Здесь солнечный ветер выдул мелкие частицы и газ. А вот более тяжелые частицы, наоборот, стремились к центру. Рост Земли продолжался сотни миллионов лет. Ее недра прогрелись до 1000-2000 К благодаря гравитационному сжатию и участвовавшим в аккумуляции крупным телам (до сотен километров в поперечнике). Падение таких тел сопровождалось образованием кратеров с очагами повышенной температуры под ними. Другой и основной источник тепла Земли - распад радиоактивных элементов, в основном, урана, тория и калия. В настоящее время температура в центре Земли достигает 5000 К, что гораздо выше, чем в конце аккумуляции. Солнечные приливы затормозили вращение близких к Солнцу планет - Меркурия и Венеры. С появлением радиологических методов был точно определен возраст Земли, Луны и Солнечной системы - около 4,6 млрд. лет. Компьютерные эксперименты продемонстрировали замечательное свойство нашей планетной системы: пролет звезды с массой порядка 0,1 массы Солнца через ее внешние области мало изменит орбиты планет земной группы. Этого нельзя сказать об удаленных объектах, расположенных в облаке Оорта, для которых расстояние от Солнца в сотни раз больше, чем радиус орбиты Земли. Гравитационное поле Галактики возмущает орбиты малых тел на окраине Солнечной системы и даже вызывает их появление внутри орбиты Земли. Что касается Солнца, центрального тела Солнечной системы, то это - типичная звезда главной последовательности, равновесие которой обусловлено равенством сил газового давления и гравитации. Солнце существует 5 миллиардов лет и еще столько же будет излучать практически неизменный поток энергии вследствие протекающих в его недрах ядерных реакций. Затем, в соответствии с законами звездной эволюции, Солнце превратится в красный гигант, и его радиус значительно увеличится, станет больше орбиты Земли. После этого газовая оболочка рассеется, и на месте Солнца останется белый карлик. Этот остаток нашего бывшего светила будет высвечивать запасы тепловой энергии в течение миллиардов лет, постепенно превращаясь в невидимый холодный объект. При этом температура на Земле сначала увеличится до 10 000°C, а затем уменьшится практически до абсолютного нуля. Современная планетная космогония встречается со многими вопросами, которые требуют строгого решения. Один из таких вопросов - парадокс вращательного момента. Протопланетные диски имеют небольшую массу, в 10-100 раз меньшую центральной звезды. Так, например, в Солнечной системе 99,8 % массы заключается в Солнце. Тем не менее, основной вращательный момент приходится именно на планеты. Поэтому вопрос о перераспределении вращательного момента из центральной части конденсирующегося газопылевого облака к периферии очень актуален и до сих пор не решен. Астрономы древности полагали, что Вселенная и Солнечная система существовали вечно и будут существовать еще столько же в неизменном виде. С появлением христианства возраст Солнечной системы значительно уменьшился. Джордано Бруно первым предположил, что звезды, подобно Солнцу, окружены планетными системами, которые непрерывно рождаются и умирают. В 1745 году французский ученый Бюффон высказал гипотезу, что планеты образовались из вещества, выброшенного из Солнца после столкновения Солнца с кометой. Немецкий философ Иммануил Кант в 1755 году впервые изложил идею о возникновении Солнечной системы из облака холодных пылинок, находящихся в хаотическом движении. Планеты по Канту формируются из того же газопылевого облака, что и Солнце. В 1796 году французский ученый Пьер Симон Лаплас описал образование Солнца и Солнечной системы из медленно вращающейся раскаленной газовой туманности. Под действием гравитации центральная часть протосолнца сжималась, скорость его вращения увеличивалась, поэтому оно приобретало сплюснутую форму. Сгустки отделялись от протосолнца и затем охлаждались. Вещество, из которого образовались планеты, первоначально по Лапласу было в горячем, расплавленном состоянии. Но потом стало ясно, что Земля никогда не была ни газовой, ни раскаленной.

 

Структура

 

Центральным  объектом Солнечной системы является Солнце -- звезда главной последовательности спектрального класса G2V, жёлтый карлик. В Солнце сосредоточена подавляющая часть всей массы системы (около 99,866 %), оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Четыре крупнейших объекта -- газовые гиганты, составляют 99 % оставшейся массы (при том, что большая часть приходится на Юпитер и Сатурн -- около 90 %).

Большинство крупных объектов, обращающихся вокруг Солнца, движутся практически в одной плоскости, называемой плоскостью эклиптики. Однако в то же время кометы и объекты пояса Койпера часто обладают большими углами наклона к этой плоскости.

Все планеты и большинство других объектов обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Есть исключения, такие как комета Галлея. Самой большой угловой скоростью обладает Меркурий -- он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты -- Нептуна -- период обращения составляет 165 земных лет.

Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°). Для наглядной демонстрации вращения используется специальный прибор -- теллурий.

Многие модели Солнечной системы условно показывают орбиты планет через равные промежутки, однако в действительности, за малым исключением, чем дальше планета или пояс от Солнца, тем больше расстояние между её орбитой и орбитой предыдущего объекта. Например, Венера приблизительно на 0,33 а. е. дальше от Солнца, чем Меркурий, в то время как Сатурн на 4,3 а. е. дальше Юпитера, а Нептун на 10,5 а. е. дальше Урана. Были попытки вывести корреляции между орбитальными расстояниями (например, --правило Тициуса -- Боде), но ни одна из теорий не стала общепринятой.

Орбиты объектов вокруг Солнца описываются законами Кеплера. Согласно им, каждый объект обращается по эллипсу, в одном из фокусов которого находится Солнце. У более близких к Солнцу объектов (с меньшей большой полуосью) больше угловая скорость вращения, поэтому короче период обращения (год). На эллиптической орбите расстояние объекта от Солнца изменяется в течение его года. Ближайшая к Солнцу точка орбиты объекта называется перигелий, наиболее удалённая -- афелий. Каждый объект движется наиболее быстро в своём перигелии и наиболее медленно в афелии. Орбиты планет близки к кругу, но многие кометы, астероиды и объекты пояса Койпера имеют сильно вытянутые эллиптические орбиты.

Информация о работе Происхождение и структура Солнечной системы